避免列表定向

IF 1 2区 数学 Q1 MATHEMATICS
Peter Bradshaw, Yaobin Chen, Hao Ma, Bojan Mohar, Hehui Wu
{"title":"避免列表定向","authors":"Peter Bradshaw, Yaobin Chen, Hao Ma, Bojan Mohar, Hehui Wu","doi":"10.1007/s00493-024-00109-z","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>G</i> with a set <i>F</i>(<i>v</i>) of forbidden values at each <span>\\(v \\in V(G)\\)</span>, an <i>F</i>-avoiding orientation of <i>G</i> is an orientation in which <span>\\(\\deg ^+(v) \\not \\in F(v)\\)</span> for each vertex <i>v</i>. Akbari, Dalirrooyfard, Ehsani, Ozeki, and Sherkati conjectured that if <span>\\(|F(v)| &lt; \\frac{1}{2} \\deg (v)\\)</span> for each <span>\\(v \\in V(G)\\)</span>, then <i>G</i> has an <i>F</i>-avoiding orientation, and they showed that this statement is true when <span>\\(\\frac{1}{2}\\)</span> is replaced by <span>\\(\\frac{1}{4}\\)</span>. In this paper, we take a step toward this conjecture by proving that if <span>\\(|F(v)| &lt; \\lfloor \\frac{1}{3} \\deg (v) \\rfloor \\)</span> for each vertex <i>v</i>, then <i>G</i> has an <i>F</i>-avoiding orientation. Furthermore, we show that if the maximum degree of <i>G</i> is subexponential in terms of the minimum degree, then this coefficient of <span>\\(\\frac{1}{3}\\)</span> can be increased to <span>\\(\\sqrt{2} - 1 - o(1) \\approx 0.414\\)</span>. Our main tool is a new sufficient condition for the existence of an <i>F</i>-avoiding orientation based on the Combinatorial Nullstellensatz of Alon and Tarsi.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"List-Avoiding Orientations\",\"authors\":\"Peter Bradshaw, Yaobin Chen, Hao Ma, Bojan Mohar, Hehui Wu\",\"doi\":\"10.1007/s00493-024-00109-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a graph <i>G</i> with a set <i>F</i>(<i>v</i>) of forbidden values at each <span>\\\\(v \\\\in V(G)\\\\)</span>, an <i>F</i>-avoiding orientation of <i>G</i> is an orientation in which <span>\\\\(\\\\deg ^+(v) \\\\not \\\\in F(v)\\\\)</span> for each vertex <i>v</i>. Akbari, Dalirrooyfard, Ehsani, Ozeki, and Sherkati conjectured that if <span>\\\\(|F(v)| &lt; \\\\frac{1}{2} \\\\deg (v)\\\\)</span> for each <span>\\\\(v \\\\in V(G)\\\\)</span>, then <i>G</i> has an <i>F</i>-avoiding orientation, and they showed that this statement is true when <span>\\\\(\\\\frac{1}{2}\\\\)</span> is replaced by <span>\\\\(\\\\frac{1}{4}\\\\)</span>. In this paper, we take a step toward this conjecture by proving that if <span>\\\\(|F(v)| &lt; \\\\lfloor \\\\frac{1}{3} \\\\deg (v) \\\\rfloor \\\\)</span> for each vertex <i>v</i>, then <i>G</i> has an <i>F</i>-avoiding orientation. Furthermore, we show that if the maximum degree of <i>G</i> is subexponential in terms of the minimum degree, then this coefficient of <span>\\\\(\\\\frac{1}{3}\\\\)</span> can be increased to <span>\\\\(\\\\sqrt{2} - 1 - o(1) \\\\approx 0.414\\\\)</span>. Our main tool is a new sufficient condition for the existence of an <i>F</i>-avoiding orientation based on the Combinatorial Nullstellensatz of Alon and Tarsi.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00109-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00109-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Akbari, Dalirrooyfard, Ehsani, Ozeki 和 Sherkati 猜想,如果每个顶点 v 都有\(|F(v)| < \frac{1}{2}\deg (v)/not \in F(v)\) ,那么 G 有一个 F-avoiding 方向。\deg (v)\) for each \(v \in V(G)\), then G has an F-avoiding orientation, and they showed that this statement is true when \(\frac{1}{2}\) is replaced by \(\frac{1}{4}\).在本文中,我们朝着这个猜想迈出了一步,证明了如果 \(|F(v)| < \lfloor \frac{1}{3}\deg (v) \rfloor \),那么 G 就有一个避开 F 的方向。此外,我们还证明了如果 G 的最大度是最小度的亚指数,那么这个 \(\frac{1}{3}\) 的系数可以增加到 \(\sqrt{2}.- 1 - o(1) (大约 0.414)。我们的主要工具是基于 Alon 和 Tarsi 的 "组合无效定理"(Combinatorial Nullstellensatz)的一个新的 F-avoiding 方向存在的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
List-Avoiding Orientations

Given a graph G with a set F(v) of forbidden values at each \(v \in V(G)\), an F-avoiding orientation of G is an orientation in which \(\deg ^+(v) \not \in F(v)\) for each vertex v. Akbari, Dalirrooyfard, Ehsani, Ozeki, and Sherkati conjectured that if \(|F(v)| < \frac{1}{2} \deg (v)\) for each \(v \in V(G)\), then G has an F-avoiding orientation, and they showed that this statement is true when \(\frac{1}{2}\) is replaced by \(\frac{1}{4}\). In this paper, we take a step toward this conjecture by proving that if \(|F(v)| < \lfloor \frac{1}{3} \deg (v) \rfloor \) for each vertex v, then G has an F-avoiding orientation. Furthermore, we show that if the maximum degree of G is subexponential in terms of the minimum degree, then this coefficient of \(\frac{1}{3}\) can be increased to \(\sqrt{2} - 1 - o(1) \approx 0.414\). Our main tool is a new sufficient condition for the existence of an F-avoiding orientation based on the Combinatorial Nullstellensatz of Alon and Tarsi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信