加速指数欧拉方案逼近抛物线半线性 SPDE 的总变化误差边界

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Charles-Edouard Bréhier
{"title":"加速指数欧拉方案逼近抛物线半线性 SPDE 的总变化误差边界","authors":"Charles-Edouard Bréhier","doi":"10.1137/22m152596x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1171-1190, June 2024. <br/> Abstract. We prove a new numerical approximation result for the solutions of semilinear parabolic stochastic partial differential equations, driven by additive space-time white noise in dimension 1. The temporal discretization is performed using an accelerated exponential Euler scheme, and we show that, under appropriate regularity conditions on the nonlinearity, the total variation distance between the distributions of the numerical approximation and of the exact solution at a given time converges to 0 when the time-step size vanishes, with order of convergence [math]. Equivalently, weak error estimates with order [math] are thus obtained for bounded measurable test functions. This is an original and major improvement compared with the performance of the standard linear implicit Euler scheme or exponential Euler methods, which do not converge in the sense of total variation when the time-step size vanishes. Equivalently weak error estimates for the standard schemes require twice differentiable test functions. The proof of the total variation error bounds for the accelerated exponential Euler scheme exploits some regularization property of the associated infinite-dimensional Kolmogorov equations.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total Variation Error Bounds for the Accelerated Exponential Euler Scheme Approximation of Parabolic Semilinear SPDEs\",\"authors\":\"Charles-Edouard Bréhier\",\"doi\":\"10.1137/22m152596x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1171-1190, June 2024. <br/> Abstract. We prove a new numerical approximation result for the solutions of semilinear parabolic stochastic partial differential equations, driven by additive space-time white noise in dimension 1. The temporal discretization is performed using an accelerated exponential Euler scheme, and we show that, under appropriate regularity conditions on the nonlinearity, the total variation distance between the distributions of the numerical approximation and of the exact solution at a given time converges to 0 when the time-step size vanishes, with order of convergence [math]. Equivalently, weak error estimates with order [math] are thus obtained for bounded measurable test functions. This is an original and major improvement compared with the performance of the standard linear implicit Euler scheme or exponential Euler methods, which do not converge in the sense of total variation when the time-step size vanishes. Equivalently weak error estimates for the standard schemes require twice differentiable test functions. The proof of the total variation error bounds for the accelerated exponential Euler scheme exploits some regularization property of the associated infinite-dimensional Kolmogorov equations.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m152596x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m152596x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 3 期第 1171-1190 页,2024 年 6 月。 摘要。我们证明了半线性抛物线随机偏微分方程解的一个新的数值逼近结果,该方程由维度为 1 的加性时空白噪声驱动。我们证明,在适当的非线性正则性条件下,当时间步长消失时,数值近似解和精确解在给定时间的分布之间的总变化距离收敛为 0,收敛阶数为 [math]。等效地,对于有界可测的检验函数,可以得到阶数为[math]的弱误差估计。与标准线性隐式欧拉方案或指数欧拉方法的性能相比,这是一项原创性的重大改进,因为当时间步长消失时,这些方法在总变化的意义上并不收敛。标准方案的等效弱误差估计需要两次可微检验函数。加速指数欧拉方案总变化误差边界的证明利用了相关无穷维 Kolmogorov 方程的某些正则化特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total Variation Error Bounds for the Accelerated Exponential Euler Scheme Approximation of Parabolic Semilinear SPDEs
SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1171-1190, June 2024.
Abstract. We prove a new numerical approximation result for the solutions of semilinear parabolic stochastic partial differential equations, driven by additive space-time white noise in dimension 1. The temporal discretization is performed using an accelerated exponential Euler scheme, and we show that, under appropriate regularity conditions on the nonlinearity, the total variation distance between the distributions of the numerical approximation and of the exact solution at a given time converges to 0 when the time-step size vanishes, with order of convergence [math]. Equivalently, weak error estimates with order [math] are thus obtained for bounded measurable test functions. This is an original and major improvement compared with the performance of the standard linear implicit Euler scheme or exponential Euler methods, which do not converge in the sense of total variation when the time-step size vanishes. Equivalently weak error estimates for the standard schemes require twice differentiable test functions. The proof of the total variation error bounds for the accelerated exponential Euler scheme exploits some regularization property of the associated infinite-dimensional Kolmogorov equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信