混合过程的无模型变化点检测

Hao Chen;Abhishek Gupta;Yin Sun;Ness Shroff
{"title":"混合过程的无模型变化点检测","authors":"Hao Chen;Abhishek Gupta;Yin Sun;Ness Shroff","doi":"10.1109/OJCSYS.2024.3398530","DOIUrl":null,"url":null,"abstract":"This paper considers the change point detection problem under dependent samples. In particular, we provide performance guarantees for the MMD-CUSUM test under exponentially \n<inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\beta$</tex-math></inline-formula>\n, and fast \n<inline-formula><tex-math>$\\phi$</tex-math></inline-formula>\n-mixing processes, which significantly expands its utility beyond the i.i.d. and Markovian cases used in previous studies. We obtain lower bounds for average-run-length (\n<inline-formula><tex-math>$ {\\mathtt {ARL}}$</tex-math></inline-formula>\n) and upper bounds for average-detection-delay (\n<inline-formula><tex-math>$ {\\mathtt {ADD}}$</tex-math></inline-formula>\n) in terms of the threshold parameter. We show that the MMD-CUSUM test enjoys the same level of performance as the i.i.d. case under fast \n<inline-formula><tex-math>$\\phi$</tex-math></inline-formula>\n-mixing processes. The MMD-CUSUM test also achieves strong performance under exponentially \n<inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>\n/\n<inline-formula><tex-math>$\\beta$</tex-math></inline-formula>\n-mixing processes, which are significantly more relaxed than existing results. The MMD-CUSUM test statistic adapts to different settings without modifications, rendering it a completely data-driven, dependence-agnostic change point detection scheme. Numerical simulations are provided at the end to evaluate our findings.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"202-213"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10522896","citationCount":"0","resultStr":"{\"title\":\"Model-Free Change Point Detection for Mixing Processes\",\"authors\":\"Hao Chen;Abhishek Gupta;Yin Sun;Ness Shroff\",\"doi\":\"10.1109/OJCSYS.2024.3398530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the change point detection problem under dependent samples. In particular, we provide performance guarantees for the MMD-CUSUM test under exponentially \\n<inline-formula><tex-math>$\\\\alpha$</tex-math></inline-formula>\\n, \\n<inline-formula><tex-math>$\\\\beta$</tex-math></inline-formula>\\n, and fast \\n<inline-formula><tex-math>$\\\\phi$</tex-math></inline-formula>\\n-mixing processes, which significantly expands its utility beyond the i.i.d. and Markovian cases used in previous studies. We obtain lower bounds for average-run-length (\\n<inline-formula><tex-math>$ {\\\\mathtt {ARL}}$</tex-math></inline-formula>\\n) and upper bounds for average-detection-delay (\\n<inline-formula><tex-math>$ {\\\\mathtt {ADD}}$</tex-math></inline-formula>\\n) in terms of the threshold parameter. We show that the MMD-CUSUM test enjoys the same level of performance as the i.i.d. case under fast \\n<inline-formula><tex-math>$\\\\phi$</tex-math></inline-formula>\\n-mixing processes. The MMD-CUSUM test also achieves strong performance under exponentially \\n<inline-formula><tex-math>$\\\\alpha$</tex-math></inline-formula>\\n/\\n<inline-formula><tex-math>$\\\\beta$</tex-math></inline-formula>\\n-mixing processes, which are significantly more relaxed than existing results. The MMD-CUSUM test statistic adapts to different settings without modifications, rendering it a completely data-driven, dependence-agnostic change point detection scheme. Numerical simulations are provided at the end to evaluate our findings.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"3 \",\"pages\":\"202-213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10522896\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10522896/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10522896/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了依赖样本下的变化点检测问题。特别是,我们为指数$\alpha$、$\beta$和快速$\phi$混合过程下的 MMD-CUSUM 检验提供了性能保证,这大大扩展了它的用途,使其超越了以往研究中使用的 i.i.d. 和马尔可夫情况。我们得到了平均运行长度($ {\mathtt {ARL}}$)的下限和平均检测延迟($ {\mathtt {ADD}}$)的上限。我们证明,在快速 $\phi$ 混合过程中,MMD-CUSUM 检验与 i.i.d. 检验具有相同的性能水平。在指数$\alpha$/$\beta$混合过程下,MMD-CUSUM 检验也取得了很好的性能,这比现有结果要宽松得多。MMD-CUSUM 检验统计量无需修改即可适应不同的设置,使其成为一种完全由数据驱动、与依赖性无关的变化点检测方案。最后还提供了数值模拟来评估我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Free Change Point Detection for Mixing Processes
This paper considers the change point detection problem under dependent samples. In particular, we provide performance guarantees for the MMD-CUSUM test under exponentially $\alpha$ , $\beta$ , and fast $\phi$ -mixing processes, which significantly expands its utility beyond the i.i.d. and Markovian cases used in previous studies. We obtain lower bounds for average-run-length ( $ {\mathtt {ARL}}$ ) and upper bounds for average-detection-delay ( $ {\mathtt {ADD}}$ ) in terms of the threshold parameter. We show that the MMD-CUSUM test enjoys the same level of performance as the i.i.d. case under fast $\phi$ -mixing processes. The MMD-CUSUM test also achieves strong performance under exponentially $\alpha$ / $\beta$ -mixing processes, which are significantly more relaxed than existing results. The MMD-CUSUM test statistic adapts to different settings without modifications, rendering it a completely data-driven, dependence-agnostic change point detection scheme. Numerical simulations are provided at the end to evaluate our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信