左删失纵向数据的随机变化点非线性混合效应模型:应用于艾滋病监测。

Binod Manandhar, Hongbin Zhang
{"title":"左删失纵向数据的随机变化点非线性混合效应模型:应用于艾滋病监测。","authors":"Binod Manandhar, Hongbin Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A change-point model is essential in longitudinal data to infer an individual specific time to an event that induces a change of trend. However, in general, change points are not known for population-based data. We present an unknown change-point model that fits the linear and non-linear mixed effects for pre- and post-change points. We address the left-censored observations. Through stochastic approximation expectation maximization (SAEM) with the Metropolis Hasting sampler, we fit a random change-point non-linear mixed effects model. We apply our method on the longitudinal viral load (VL) data reported to the HIV surveillance registry from New York City.</p>","PeriodicalId":87345,"journal":{"name":"Proceedings. American Statistical Association. Annual Meeting","volume":"2021 ","pages":"1320-1327"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162255/pdf/","citationCount":"0","resultStr":"{\"title\":\"Random Change-Point Non-linear Mixed Effects Model for left-censored longitudinal data: An application to HIV surveillance.\",\"authors\":\"Binod Manandhar, Hongbin Zhang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A change-point model is essential in longitudinal data to infer an individual specific time to an event that induces a change of trend. However, in general, change points are not known for population-based data. We present an unknown change-point model that fits the linear and non-linear mixed effects for pre- and post-change points. We address the left-censored observations. Through stochastic approximation expectation maximization (SAEM) with the Metropolis Hasting sampler, we fit a random change-point non-linear mixed effects model. We apply our method on the longitudinal viral load (VL) data reported to the HIV surveillance registry from New York City.</p>\",\"PeriodicalId\":87345,\"journal\":{\"name\":\"Proceedings. American Statistical Association. Annual Meeting\",\"volume\":\"2021 \",\"pages\":\"1320-1327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162255/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. American Statistical Association. Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. American Statistical Association. Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在纵向数据中,变化点模型对于推断引起趋势变化的事件发生的具体时间至关重要。然而,一般来说,人口数据的变化点是未知的。我们提出了一种未知变化点模型,它可以拟合变化点前后的线性和非线性混合效应。我们解决了左删失观测值的问题。通过使用 Metropolis Hasting 采样器的随机近似期望最大化(SAEM),我们拟合了随机变化点非线性混合效应模型。我们将这一方法应用于向纽约市 HIV 监测登记处报告的纵向病毒载量 (VL) 数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Change-Point Non-linear Mixed Effects Model for left-censored longitudinal data: An application to HIV surveillance.

A change-point model is essential in longitudinal data to infer an individual specific time to an event that induces a change of trend. However, in general, change points are not known for population-based data. We present an unknown change-point model that fits the linear and non-linear mixed effects for pre- and post-change points. We address the left-censored observations. Through stochastic approximation expectation maximization (SAEM) with the Metropolis Hasting sampler, we fit a random change-point non-linear mixed effects model. We apply our method on the longitudinal viral load (VL) data reported to the HIV surveillance registry from New York City.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信