Julia Revillo Imbernon, Jean-Marc Weibel, Eric Ennifar, Gilles Prévost, Esther Kellenberger
{"title":"新霉素 B 和卡那霉素 A 与氨基糖苷类药物修饰酶 (AME) 和细菌核糖体 RNA 结合的结构分析。","authors":"Julia Revillo Imbernon, Jean-Marc Weibel, Eric Ennifar, Gilles Prévost, Esther Kellenberger","doi":"10.1002/minf.202300339","DOIUrl":null,"url":null,"abstract":"<p><p>Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300339"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural analysis of neomycin B and kanamycin A binding Aminoglycosides Modifying Enzymes (AME) and bacterial ribosomal RNA.\",\"authors\":\"Julia Revillo Imbernon, Jean-Marc Weibel, Eric Ennifar, Gilles Prévost, Esther Kellenberger\",\"doi\":\"10.1002/minf.202300339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202300339\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300339\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
氨基糖苷类药物是面临细菌耐药性挑战的重要抗生素。本研究探讨了在耐药性不断升级的背景下氨基糖苷类药物修饰酶的重要性。利用蛋白质数据库中二十多年的结构数据,我们重点研究了两种关键抗生素--新霉素 B 和卡那霉素 A,以探索氨基糖苷类结构是如何被该酶家族利用的。我们对不同的酶和 RNA A 位点目标进行了系统比较,确定了识别模式的共同特征,同时评估了新霉素 B 和卡那霉素 A 在各种环境中的适应性。
Structural analysis of neomycin B and kanamycin A binding Aminoglycosides Modifying Enzymes (AME) and bacterial ribosomal RNA.
Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.