苯并咪唑衍生物的硅学研究、蛋白激酶抑制和分子对接研究。

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS
Bioinformatics and Biology Insights Pub Date : 2024-06-06 eCollection Date: 2024-01-01 DOI:10.1177/11779322241247635
Kamaraj Karthick, Kamaraj Abishek, Ebenezer Angel Jemima
{"title":"苯并咪唑衍生物的硅学研究、蛋白激酶抑制和分子对接研究。","authors":"Kamaraj Karthick, Kamaraj Abishek, Ebenezer Angel Jemima","doi":"10.1177/11779322241247635","DOIUrl":null,"url":null,"abstract":"<p><p>Kinase enzymes play an important role in cellular proliferation, and inhibition of their activity is a major goal of cancer therapy. Protein kinase inhibitors as benzimidazole derivatives can be applied for prevention or treatment of cancers through inhibition of cell proliferation. To evaluate their protein kinase inhibitory effects, as well as the <i>in silico</i> study for active benzimidazole derivatives. Benzimidazole derivatives has presented significant therapeutic potential against several disorders and known to have numerous biological activities (such as antibacterial, antiviral and anti-inflammatory). Benzimidazole derivatives have shown significant potential in the reduction of viral load as well as in enhancing immunity. To forecast absorption, distribution, metabolism, excretion and toxicity, simply known as ADMET and the Lipinski rule of five parameters of the examined substances, the admetSAR and Swiss ADME were used. The ADMET predictions revealed that the compounds had good and safe pharmacokinetic features, making them acceptable for further development as therapeutic candidates in clinical trials. This study primarily focused on blocking 2 key targets of kinase proteins (CDK4/CycD1 and Aurora B). 2-Phenylbenzimidazole has shown the greatest inhibitory potential (with a binding energy of -8.2 kcal/mol) against protein kinase inhibitors. This study results would pave the potential lead medication for anticancer therapeutic strategies.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159556/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>In Silico</i> Study, Protein Kinase Inhibition and Molecular Docking Study of Benzimidazole Derivatives.\",\"authors\":\"Kamaraj Karthick, Kamaraj Abishek, Ebenezer Angel Jemima\",\"doi\":\"10.1177/11779322241247635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kinase enzymes play an important role in cellular proliferation, and inhibition of their activity is a major goal of cancer therapy. Protein kinase inhibitors as benzimidazole derivatives can be applied for prevention or treatment of cancers through inhibition of cell proliferation. To evaluate their protein kinase inhibitory effects, as well as the <i>in silico</i> study for active benzimidazole derivatives. Benzimidazole derivatives has presented significant therapeutic potential against several disorders and known to have numerous biological activities (such as antibacterial, antiviral and anti-inflammatory). Benzimidazole derivatives have shown significant potential in the reduction of viral load as well as in enhancing immunity. To forecast absorption, distribution, metabolism, excretion and toxicity, simply known as ADMET and the Lipinski rule of five parameters of the examined substances, the admetSAR and Swiss ADME were used. The ADMET predictions revealed that the compounds had good and safe pharmacokinetic features, making them acceptable for further development as therapeutic candidates in clinical trials. This study primarily focused on blocking 2 key targets of kinase proteins (CDK4/CycD1 and Aurora B). 2-Phenylbenzimidazole has shown the greatest inhibitory potential (with a binding energy of -8.2 kcal/mol) against protein kinase inhibitors. This study results would pave the potential lead medication for anticancer therapeutic strategies.</p>\",\"PeriodicalId\":9065,\"journal\":{\"name\":\"Bioinformatics and Biology Insights\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11779322241247635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322241247635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

激酶在细胞增殖中发挥着重要作用,抑制其活性是癌症治疗的一个主要目标。作为苯并咪唑衍生物的蛋白激酶抑制剂可通过抑制细胞增殖来预防或治疗癌症。为了评估它们对蛋白激酶的抑制作用,以及进行活性苯并咪唑衍生物的硅学研究。苯并咪唑衍生物对多种疾病具有显著的治疗潜力,而且已知具有多种生物活性(如抗菌、抗病毒和抗炎)。苯并咪唑衍生物在降低病毒载量和增强免疫力方面具有显著的潜力。为了预测受试物质的吸收、分布、代谢、排泄和毒性(简称 ADMET)以及利宾斯基五参数规则,我们使用了 admetSAR 和 Swiss ADME。ADMET 预测结果表明,这些化合物具有良好、安全的药代动力学特征,可以作为候选治疗药物在临床试验中进一步开发。这项研究主要侧重于阻断激酶蛋白的两个关键靶点(CDK4/CycD1 和 Aurora B)。2-苯基苯并咪唑对蛋白激酶抑制剂的抑制潜力最大(结合能为-8.2 kcal/mol)。这项研究结果将为抗癌治疗策略提供潜在的先导药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Silico Study, Protein Kinase Inhibition and Molecular Docking Study of Benzimidazole Derivatives.

Kinase enzymes play an important role in cellular proliferation, and inhibition of their activity is a major goal of cancer therapy. Protein kinase inhibitors as benzimidazole derivatives can be applied for prevention or treatment of cancers through inhibition of cell proliferation. To evaluate their protein kinase inhibitory effects, as well as the in silico study for active benzimidazole derivatives. Benzimidazole derivatives has presented significant therapeutic potential against several disorders and known to have numerous biological activities (such as antibacterial, antiviral and anti-inflammatory). Benzimidazole derivatives have shown significant potential in the reduction of viral load as well as in enhancing immunity. To forecast absorption, distribution, metabolism, excretion and toxicity, simply known as ADMET and the Lipinski rule of five parameters of the examined substances, the admetSAR and Swiss ADME were used. The ADMET predictions revealed that the compounds had good and safe pharmacokinetic features, making them acceptable for further development as therapeutic candidates in clinical trials. This study primarily focused on blocking 2 key targets of kinase proteins (CDK4/CycD1 and Aurora B). 2-Phenylbenzimidazole has shown the greatest inhibitory potential (with a binding energy of -8.2 kcal/mol) against protein kinase inhibitors. This study results would pave the potential lead medication for anticancer therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信