{"title":"利用短读数 NGS 数据改进 PMS2 基因测试的开源生物信息学管道。","authors":"","doi":"10.1016/j.jmoldx.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>The molecular diagnosis of mismatch repair–deficient cancer syndromes is hampered by difficulties in sequencing the <em>PMS2</em> gene, mainly owing to the PMS2CL pseudogene. Next-generation sequencing short reads cannot be mapped unambiguously by standard pipelines, compromising variant calling accuracy. This study aimed to provide a refined bioinformatic pipeline for <em>PMS2</em> mutational analysis and explore <em>PMS2</em> germline pathogenic variant prevalence in an unselected hereditary cancer (HC) cohort. <em>PMS2</em> mutational analysis was optimized using two cohorts: 192 unselected HC patients for assessing the allelic ratio of paralogous sequence variants, and 13 samples enriched with <em>PMS2</em> (likely) pathogenic variants screened previously by long-range genomic DNA PCR amplification. Reads were forced to align with the <em>PMS2</em> reference sequence, except those corresponding to exon 11, where only those intersecting gene-specific invariant positions were considered. Afterward, the refined pipeline's accuracy was validated in a cohort of 40 patients and used to screen 5619 HC patients. Compared with our routine diagnostic pipeline, the PMS2_vaR pipeline showed increased technical sensitivity (0.853 to 0.956, respectively) in the validation cohort, identifying all previously <em>PMS2</em> pathogenic variants found by long-range genomic DNA PCR amplification. Fifteen HC cohort samples carried a pathogenic <em>PMS2</em> variant (15 of 5619; 0.285%), doubling the estimated prevalence in the general population. The refined open-source approach improved <em>PMS2</em> mutational analysis accuracy, allowing its inclusion in the routine next-generation sequencing pipeline streamlining <em>PMS2</em> screening.</p></div>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1525157824001181/pdfft?md5=91683b4368460b158919e0c187d84829&pid=1-s2.0-S1525157824001181-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Open-Source Bioinformatic Pipeline to Improve PMS2 Genetic Testing Using Short-Read NGS Data\",\"authors\":\"\",\"doi\":\"10.1016/j.jmoldx.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The molecular diagnosis of mismatch repair–deficient cancer syndromes is hampered by difficulties in sequencing the <em>PMS2</em> gene, mainly owing to the PMS2CL pseudogene. Next-generation sequencing short reads cannot be mapped unambiguously by standard pipelines, compromising variant calling accuracy. This study aimed to provide a refined bioinformatic pipeline for <em>PMS2</em> mutational analysis and explore <em>PMS2</em> germline pathogenic variant prevalence in an unselected hereditary cancer (HC) cohort. <em>PMS2</em> mutational analysis was optimized using two cohorts: 192 unselected HC patients for assessing the allelic ratio of paralogous sequence variants, and 13 samples enriched with <em>PMS2</em> (likely) pathogenic variants screened previously by long-range genomic DNA PCR amplification. Reads were forced to align with the <em>PMS2</em> reference sequence, except those corresponding to exon 11, where only those intersecting gene-specific invariant positions were considered. Afterward, the refined pipeline's accuracy was validated in a cohort of 40 patients and used to screen 5619 HC patients. Compared with our routine diagnostic pipeline, the PMS2_vaR pipeline showed increased technical sensitivity (0.853 to 0.956, respectively) in the validation cohort, identifying all previously <em>PMS2</em> pathogenic variants found by long-range genomic DNA PCR amplification. Fifteen HC cohort samples carried a pathogenic <em>PMS2</em> variant (15 of 5619; 0.285%), doubling the estimated prevalence in the general population. The refined open-source approach improved <em>PMS2</em> mutational analysis accuracy, allowing its inclusion in the routine next-generation sequencing pipeline streamlining <em>PMS2</em> screening.</p></div>\",\"PeriodicalId\":50128,\"journal\":{\"name\":\"Journal of Molecular Diagnostics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1525157824001181/pdfft?md5=91683b4368460b158919e0c187d84829&pid=1-s2.0-S1525157824001181-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1525157824001181\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525157824001181","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Open-Source Bioinformatic Pipeline to Improve PMS2 Genetic Testing Using Short-Read NGS Data
The molecular diagnosis of mismatch repair–deficient cancer syndromes is hampered by difficulties in sequencing the PMS2 gene, mainly owing to the PMS2CL pseudogene. Next-generation sequencing short reads cannot be mapped unambiguously by standard pipelines, compromising variant calling accuracy. This study aimed to provide a refined bioinformatic pipeline for PMS2 mutational analysis and explore PMS2 germline pathogenic variant prevalence in an unselected hereditary cancer (HC) cohort. PMS2 mutational analysis was optimized using two cohorts: 192 unselected HC patients for assessing the allelic ratio of paralogous sequence variants, and 13 samples enriched with PMS2 (likely) pathogenic variants screened previously by long-range genomic DNA PCR amplification. Reads were forced to align with the PMS2 reference sequence, except those corresponding to exon 11, where only those intersecting gene-specific invariant positions were considered. Afterward, the refined pipeline's accuracy was validated in a cohort of 40 patients and used to screen 5619 HC patients. Compared with our routine diagnostic pipeline, the PMS2_vaR pipeline showed increased technical sensitivity (0.853 to 0.956, respectively) in the validation cohort, identifying all previously PMS2 pathogenic variants found by long-range genomic DNA PCR amplification. Fifteen HC cohort samples carried a pathogenic PMS2 variant (15 of 5619; 0.285%), doubling the estimated prevalence in the general population. The refined open-source approach improved PMS2 mutational analysis accuracy, allowing its inclusion in the routine next-generation sequencing pipeline streamlining PMS2 screening.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.