电子束诱导污染生长的反应扩散研究。

IF 2.1 3区 工程技术 Q2 MICROSCOPY
Erich Müller , Katharina Adrion , Milena Hugenschmidt , Dagmar Gerthsen
{"title":"电子束诱导污染生长的反应扩散研究。","authors":"Erich Müller ,&nbsp;Katharina Adrion ,&nbsp;Milena Hugenschmidt ,&nbsp;Dagmar Gerthsen","doi":"10.1016/j.ultramic.2024.113995","DOIUrl":null,"url":null,"abstract":"<div><p>A time-dependent reaction-diffusion model was elaborated to better understand the dynamical growth of contamination on surfaces illuminated by an electron beam. The goal of this work was to fully describe the flow of hydrocarbon molecules, denoted as contaminants, and their polymerization in the irradiated area with the number of parameters reduced to a minimum necessary. It was considered that the diffusion process of contaminants is driven by the gradient of their surface density generated by the impact of a circular homogeneous electron beam. The contribution of the residual gas atmosphere in the instrument was described by the tendency to reestablish the initial equilibrium surface density of contaminants before irradiation. The four unknown parameters of the model, the electron interaction cross-section, the diffusion coefficient, the initial surface density of contaminants, and the frequency of the supply of contaminants from the residual gas atmosphere were determined by comparing the modeled contamination growth with experimental results. The experiments were designed such that the influence of the single parameters could be unequivocally separated. To follow the dynamical evolution of the system and to generate time-resolved distinct experimental data, successive contamination measurements were performed at short time intervals up to 20 min. The local height and shape of the grown contamination were quantified by evaluating high-angle annular dark-field (HAADF) scanning-transmission- electron-microcopy (STEM) image intensities and corresponding Monte-Carlo simulations. Our model also applies to nonhomogeneous initial conditions like the reduced local surface density of contaminants after previous beam-showering. The dynamic analyses of this process might provide hints regarding the relative size of the contaminant molecules and also indicate some measures for the reduction of contamination growth.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"264 ","pages":"Article 113995"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000743/pdfft?md5=b52e487c25a3a15e9b96b35b77c28a8c&pid=1-s2.0-S0304399124000743-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reaction-diffusion study of electron-beam-induced contamination growth\",\"authors\":\"Erich Müller ,&nbsp;Katharina Adrion ,&nbsp;Milena Hugenschmidt ,&nbsp;Dagmar Gerthsen\",\"doi\":\"10.1016/j.ultramic.2024.113995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A time-dependent reaction-diffusion model was elaborated to better understand the dynamical growth of contamination on surfaces illuminated by an electron beam. The goal of this work was to fully describe the flow of hydrocarbon molecules, denoted as contaminants, and their polymerization in the irradiated area with the number of parameters reduced to a minimum necessary. It was considered that the diffusion process of contaminants is driven by the gradient of their surface density generated by the impact of a circular homogeneous electron beam. The contribution of the residual gas atmosphere in the instrument was described by the tendency to reestablish the initial equilibrium surface density of contaminants before irradiation. The four unknown parameters of the model, the electron interaction cross-section, the diffusion coefficient, the initial surface density of contaminants, and the frequency of the supply of contaminants from the residual gas atmosphere were determined by comparing the modeled contamination growth with experimental results. The experiments were designed such that the influence of the single parameters could be unequivocally separated. To follow the dynamical evolution of the system and to generate time-resolved distinct experimental data, successive contamination measurements were performed at short time intervals up to 20 min. The local height and shape of the grown contamination were quantified by evaluating high-angle annular dark-field (HAADF) scanning-transmission- electron-microcopy (STEM) image intensities and corresponding Monte-Carlo simulations. Our model also applies to nonhomogeneous initial conditions like the reduced local surface density of contaminants after previous beam-showering. The dynamic analyses of this process might provide hints regarding the relative size of the contaminant molecules and also indicate some measures for the reduction of contamination growth.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"264 \",\"pages\":\"Article 113995\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000743/pdfft?md5=b52e487c25a3a15e9b96b35b77c28a8c&pid=1-s2.0-S0304399124000743-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000743\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000743","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地理解在电子束照射下表面污染物的动态生长过程,我们建立了一个随时间变化的反应扩散模型。这项工作的目标是全面描述碳氢化合物分子(称为污染物)在辐照区域的流动及其聚合过程,并将参数数量减少到必要的最低水平。研究认为,污染物的扩散过程是由圆形均质电子束撞击产生的表面密度梯度驱动的。仪器中的残余气体环境的作用是重建辐照前污染物初始平衡表面密度的趋势。模型的四个未知参数,即电子相互作用截面、扩散系数、污染物的初始表面密度以及残余气体环境中污染物的供应频率,是通过比较污染增长模型和实验结果确定的。实验设计的目的是明确区分单个参数的影响。为了跟踪系统的动态演变并生成时间分辨的实验数据,在最长 20 分钟的短时间间隔内连续进行了污染测量。通过评估高角度环形暗场(HAADF)扫描-透射-电子显微镜(STEM)图像强度和相应的蒙特卡洛模拟,量化了生长污染的局部高度和形状。我们的模型还适用于非均质初始条件,如先前光束喷射后污染物的局部表面密度降低。对这一过程的动态分析可能会为污染物分子的相对大小提供提示,并指出一些减少污染物增长的措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reaction-diffusion study of electron-beam-induced contamination growth

A time-dependent reaction-diffusion model was elaborated to better understand the dynamical growth of contamination on surfaces illuminated by an electron beam. The goal of this work was to fully describe the flow of hydrocarbon molecules, denoted as contaminants, and their polymerization in the irradiated area with the number of parameters reduced to a minimum necessary. It was considered that the diffusion process of contaminants is driven by the gradient of their surface density generated by the impact of a circular homogeneous electron beam. The contribution of the residual gas atmosphere in the instrument was described by the tendency to reestablish the initial equilibrium surface density of contaminants before irradiation. The four unknown parameters of the model, the electron interaction cross-section, the diffusion coefficient, the initial surface density of contaminants, and the frequency of the supply of contaminants from the residual gas atmosphere were determined by comparing the modeled contamination growth with experimental results. The experiments were designed such that the influence of the single parameters could be unequivocally separated. To follow the dynamical evolution of the system and to generate time-resolved distinct experimental data, successive contamination measurements were performed at short time intervals up to 20 min. The local height and shape of the grown contamination were quantified by evaluating high-angle annular dark-field (HAADF) scanning-transmission- electron-microcopy (STEM) image intensities and corresponding Monte-Carlo simulations. Our model also applies to nonhomogeneous initial conditions like the reduced local surface density of contaminants after previous beam-showering. The dynamic analyses of this process might provide hints regarding the relative size of the contaminant molecules and also indicate some measures for the reduction of contamination growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信