Sergei Alexandrov, Soheyla Feyzbakhsh, Albrecht Klemm, Boris Pioline, Thorsten Schimannek
{"title":"量子几何、稳定性和模块性","authors":"Sergei Alexandrov, Soheyla Feyzbakhsh, Albrecht Klemm, Boris Pioline, Thorsten Schimannek","doi":"10.4310/cntp.2024.v18.n1.a2","DOIUrl":null,"url":null,"abstract":"related to Gopakumar-Vafa (GV) invariants, and rank 0 Donaldson-Thomas (DT) invariants countingD4-D2-D0 BPS bound states, we rigorously compute the first few terms in the generating series of Abelian D4-D2-D0 indices for compact one-parameter Calabi-Yau threefolds of hypergeometric type. In all cases where GV invariants can be computed to sufficiently high genus, we find striking confirmation that the generating series is modular, and predict infinite series of Abelian D4-D2-D0 indices. Conversely, we use these results to provide new constraints for the direct integration method, which allows to compute GV invariants (and therefore the topological string partition function) to higher genus than hitherto possible. The triangle of relations between GV/PT/DT invariants is powered by a new explicit formula relating PT and rank 0 DT invariants, which is proven in an Appendix by the second named author. As a corollary, we obtain rigorous Castelnuovo-type bounds for PT and GV invariants for CY threefolds with Picard rank one.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum geometry, stability and modularity\",\"authors\":\"Sergei Alexandrov, Soheyla Feyzbakhsh, Albrecht Klemm, Boris Pioline, Thorsten Schimannek\",\"doi\":\"10.4310/cntp.2024.v18.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"related to Gopakumar-Vafa (GV) invariants, and rank 0 Donaldson-Thomas (DT) invariants countingD4-D2-D0 BPS bound states, we rigorously compute the first few terms in the generating series of Abelian D4-D2-D0 indices for compact one-parameter Calabi-Yau threefolds of hypergeometric type. In all cases where GV invariants can be computed to sufficiently high genus, we find striking confirmation that the generating series is modular, and predict infinite series of Abelian D4-D2-D0 indices. Conversely, we use these results to provide new constraints for the direct integration method, which allows to compute GV invariants (and therefore the topological string partition function) to higher genus than hitherto possible. The triangle of relations between GV/PT/DT invariants is powered by a new explicit formula relating PT and rank 0 DT invariants, which is proven in an Appendix by the second named author. As a corollary, we obtain rigorous Castelnuovo-type bounds for PT and GV invariants for CY threefolds with Picard rank one.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2024.v18.n1.a2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2024.v18.n1.a2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
related to Gopakumar-Vafa (GV) invariants, and rank 0 Donaldson-Thomas (DT) invariants countingD4-D2-D0 BPS bound states, we rigorously compute the first few terms in the generating series of Abelian D4-D2-D0 indices for compact one-parameter Calabi-Yau threefolds of hypergeometric type. In all cases where GV invariants can be computed to sufficiently high genus, we find striking confirmation that the generating series is modular, and predict infinite series of Abelian D4-D2-D0 indices. Conversely, we use these results to provide new constraints for the direct integration method, which allows to compute GV invariants (and therefore the topological string partition function) to higher genus than hitherto possible. The triangle of relations between GV/PT/DT invariants is powered by a new explicit formula relating PT and rank 0 DT invariants, which is proven in an Appendix by the second named author. As a corollary, we obtain rigorous Castelnuovo-type bounds for PT and GV invariants for CY threefolds with Picard rank one.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.