利用时变参数 SIRD 模型连接 Covid-19 数据和流行病学模型

IF 9.9 3区 经济学 Q1 ECONOMICS
Cem Çakmaklı , Yasin Şimşek
{"title":"利用时变参数 SIRD 模型连接 Covid-19 数据和流行病学模型","authors":"Cem Çakmaklı ,&nbsp;Yasin Şimşek","doi":"10.1016/j.jeconom.2024.105787","DOIUrl":null,"url":null,"abstract":"<div><p>This paper extends the canonical model of epidemiology, the SIRD model, to allow for time-varying parameters for real-time measurement and prediction of the trajectory of the Covid-19 pandemic. Time variation in model parameters is captured using the score-driven modeling structure designed for the typical daily count data related to the pandemic. The resulting specification permits a flexible yet parsimonious model with a low computational cost. The model is extended to allow for unreported cases using a mixed-frequency setting. Results suggest that these cases’ effects on the parameter estimates might be sizeable. Full sample results show that the flexible framework accurately captures the successive waves of the pandemic. A real-time exercise indicates that the proposed structure delivers timely and precise information on the pandemic’s current stance. This superior performance, in turn, transforms into accurate predictions of the death cases and cases treated in Intensive Care Units (ICUs).</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"242 1","pages":"Article 105787"},"PeriodicalIF":9.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the Covid-19 data and the epidemiological model using the time-varying parameter SIRD model\",\"authors\":\"Cem Çakmaklı ,&nbsp;Yasin Şimşek\",\"doi\":\"10.1016/j.jeconom.2024.105787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper extends the canonical model of epidemiology, the SIRD model, to allow for time-varying parameters for real-time measurement and prediction of the trajectory of the Covid-19 pandemic. Time variation in model parameters is captured using the score-driven modeling structure designed for the typical daily count data related to the pandemic. The resulting specification permits a flexible yet parsimonious model with a low computational cost. The model is extended to allow for unreported cases using a mixed-frequency setting. Results suggest that these cases’ effects on the parameter estimates might be sizeable. Full sample results show that the flexible framework accurately captures the successive waves of the pandemic. A real-time exercise indicates that the proposed structure delivers timely and precise information on the pandemic’s current stance. This superior performance, in turn, transforms into accurate predictions of the death cases and cases treated in Intensive Care Units (ICUs).</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"242 1\",\"pages\":\"Article 105787\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624001337\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001337","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对流行病学的典型模型 SIRD 模型进行了扩展,允许使用时变参数对 Covid-19 大流行的轨迹进行实时测量和预测。模型参数的时间变化是通过为与大流行相关的典型每日计数数据设计的分数驱动建模结构来捕捉的。由此产生的规范允许建立一个灵活而简洁的模型,且计算成本较低。该模型通过混合频率设置进行了扩展,以考虑未报告的病例。结果表明,这些病例对参数估计的影响可能很大。全样本结果表明,灵活的框架准确地捕捉到了大流行的连续波次。实时演练表明,建议的结构能及时、准确地提供有关大流行病当前态势的信息。这种卓越的性能反过来又转化为对死亡病例和重症监护室(ICU)治疗病例的准确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging the Covid-19 data and the epidemiological model using the time-varying parameter SIRD model

This paper extends the canonical model of epidemiology, the SIRD model, to allow for time-varying parameters for real-time measurement and prediction of the trajectory of the Covid-19 pandemic. Time variation in model parameters is captured using the score-driven modeling structure designed for the typical daily count data related to the pandemic. The resulting specification permits a flexible yet parsimonious model with a low computational cost. The model is extended to allow for unreported cases using a mixed-frequency setting. Results suggest that these cases’ effects on the parameter estimates might be sizeable. Full sample results show that the flexible framework accurately captures the successive waves of the pandemic. A real-time exercise indicates that the proposed structure delivers timely and precise information on the pandemic’s current stance. This superior performance, in turn, transforms into accurate predictions of the death cases and cases treated in Intensive Care Units (ICUs).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信