{"title":"用于分布式学习的生成式人工智能增强智能电网通信","authors":"Seyed Mahmoud Sajjadi Mohammadabadi , Mahmoudreza Entezami , Aidin Karimi Moghaddam , Mansour Orangian , Shayan Nejadshamsi","doi":"10.1016/j.ijin.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning models are the backbone of smart grid optimization, but their effectiveness hinges on access to vast amounts of training data. However, smart grids face critical communication bottlenecks due to the ever-increasing volume of data from distributed sensors. This paper introduces a novel approach leveraging Generative Artificial Intelligence (GenAI), specifically a type of pre-trained Foundation Model (FM) architecture suitable for time series data due to its efficiency and privacy-preserving properties. These GenAI models are distributed to agents, or data holders, empowering them to fine-tune the foundation model with their local datasets. By fine-tuning the foundation model, the updated model can produce synthetic data that mirrors real-world grid conditions. The server aggregates fine-tuned model from all agents and then generates synthetic data which considers all data collected in the grid. This synthetic data can be used to train global machine learning models for specific tasks like anomaly detection and energy optimization. Then, the trained task models are distributed to agents in the grid to leverage them. The paper highlights the advantages of GenAI for smart grid communication, including reduced communication burden, enhanced privacy through anonymized data transmission, and improved efficiency and scalability. By enabling a distributed and intelligent communication architecture, GenAI introduces a novel way for a more secure, efficient, and sustainable energy future.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 267-274"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603024000265/pdfft?md5=b36de28bb4f3c1a5f7cec09e98576268&pid=1-s2.0-S2666603024000265-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generative artificial intelligence for distributed learning to enhance smart grid communication\",\"authors\":\"Seyed Mahmoud Sajjadi Mohammadabadi , Mahmoudreza Entezami , Aidin Karimi Moghaddam , Mansour Orangian , Shayan Nejadshamsi\",\"doi\":\"10.1016/j.ijin.2024.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning models are the backbone of smart grid optimization, but their effectiveness hinges on access to vast amounts of training data. However, smart grids face critical communication bottlenecks due to the ever-increasing volume of data from distributed sensors. This paper introduces a novel approach leveraging Generative Artificial Intelligence (GenAI), specifically a type of pre-trained Foundation Model (FM) architecture suitable for time series data due to its efficiency and privacy-preserving properties. These GenAI models are distributed to agents, or data holders, empowering them to fine-tune the foundation model with their local datasets. By fine-tuning the foundation model, the updated model can produce synthetic data that mirrors real-world grid conditions. The server aggregates fine-tuned model from all agents and then generates synthetic data which considers all data collected in the grid. This synthetic data can be used to train global machine learning models for specific tasks like anomaly detection and energy optimization. Then, the trained task models are distributed to agents in the grid to leverage them. The paper highlights the advantages of GenAI for smart grid communication, including reduced communication burden, enhanced privacy through anonymized data transmission, and improved efficiency and scalability. By enabling a distributed and intelligent communication architecture, GenAI introduces a novel way for a more secure, efficient, and sustainable energy future.</p></div>\",\"PeriodicalId\":100702,\"journal\":{\"name\":\"International Journal of Intelligent Networks\",\"volume\":\"5 \",\"pages\":\"Pages 267-274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666603024000265/pdfft?md5=b36de28bb4f3c1a5f7cec09e98576268&pid=1-s2.0-S2666603024000265-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666603024000265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generative artificial intelligence for distributed learning to enhance smart grid communication
Machine learning models are the backbone of smart grid optimization, but their effectiveness hinges on access to vast amounts of training data. However, smart grids face critical communication bottlenecks due to the ever-increasing volume of data from distributed sensors. This paper introduces a novel approach leveraging Generative Artificial Intelligence (GenAI), specifically a type of pre-trained Foundation Model (FM) architecture suitable for time series data due to its efficiency and privacy-preserving properties. These GenAI models are distributed to agents, or data holders, empowering them to fine-tune the foundation model with their local datasets. By fine-tuning the foundation model, the updated model can produce synthetic data that mirrors real-world grid conditions. The server aggregates fine-tuned model from all agents and then generates synthetic data which considers all data collected in the grid. This synthetic data can be used to train global machine learning models for specific tasks like anomaly detection and energy optimization. Then, the trained task models are distributed to agents in the grid to leverage them. The paper highlights the advantages of GenAI for smart grid communication, including reduced communication burden, enhanced privacy through anonymized data transmission, and improved efficiency and scalability. By enabling a distributed and intelligent communication architecture, GenAI introduces a novel way for a more secure, efficient, and sustainable energy future.