整合话语特征和反应评估,推进移情对话

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bobo Li , Hao Fei , Fangfang Su , Fei Li , Donghong Ji
{"title":"整合话语特征和反应评估,推进移情对话","authors":"Bobo Li ,&nbsp;Hao Fei ,&nbsp;Fangfang Su ,&nbsp;Fei Li ,&nbsp;Donghong Ji","doi":"10.1016/j.ipm.2024.103803","DOIUrl":null,"url":null,"abstract":"<div><p>Empathetic response generation is a crucial task in natural language processing, enabling emotionally resonant machine–human interactions. In this paper, we introduce the InfRa (<strong>In</strong>tegrating Discourse <strong>F</strong>eatures and <strong>R</strong>esponse <strong>A</strong>ssessment) model to address limitations in traditional methods for this task, such as the lack of deep dialogue comprehension and response control. InfRa integrates discourse features to augment structural dialogue understanding, with a novel edge pruning and mutual information learning module to further refine the representation. The model also employs a response evaluation module for dynamic optimization, ensuring emotional and semantic consistency between the generated response and its context. Our experiments demonstrate that InfRa outperforms existing baselines, reducing the Perplexity (PPL) score by approximately 9 points and excelling in all three fine-grained aspects of human evaluation. This research not only advances the development of empathetic chatbots but also provides valuable insights for broader text generation tasks.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating discourse features and response assessment for advancing empathetic dialogue\",\"authors\":\"Bobo Li ,&nbsp;Hao Fei ,&nbsp;Fangfang Su ,&nbsp;Fei Li ,&nbsp;Donghong Ji\",\"doi\":\"10.1016/j.ipm.2024.103803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Empathetic response generation is a crucial task in natural language processing, enabling emotionally resonant machine–human interactions. In this paper, we introduce the InfRa (<strong>In</strong>tegrating Discourse <strong>F</strong>eatures and <strong>R</strong>esponse <strong>A</strong>ssessment) model to address limitations in traditional methods for this task, such as the lack of deep dialogue comprehension and response control. InfRa integrates discourse features to augment structural dialogue understanding, with a novel edge pruning and mutual information learning module to further refine the representation. The model also employs a response evaluation module for dynamic optimization, ensuring emotional and semantic consistency between the generated response and its context. Our experiments demonstrate that InfRa outperforms existing baselines, reducing the Perplexity (PPL) score by approximately 9 points and excelling in all three fine-grained aspects of human evaluation. This research not only advances the development of empathetic chatbots but also provides valuable insights for broader text generation tasks.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324001626\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324001626","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

情感响应生成是自然语言处理中的一项重要任务,它能使机器与人的交互产生情感共鸣。在本文中,我们介绍了 InfRa(整合话语特征和响应评估)模型,以解决这项任务中传统方法的局限性,如缺乏深度对话理解和响应控制。InfRa 整合了话语特征来增强结构性对话理解,并通过新颖的边缘修剪和互信息学习模块来进一步完善表征。该模型还采用了反应评估模块进行动态优化,确保生成的反应与其上下文之间在情感和语义上保持一致。我们的实验证明,InfRa 的表现优于现有的基线,它将复杂度(PPL)得分降低了约 9 分,并在人类评估的所有三个细粒度方面表现出色。这项研究不仅推动了移情聊天机器人的开发,还为更广泛的文本生成任务提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating discourse features and response assessment for advancing empathetic dialogue

Empathetic response generation is a crucial task in natural language processing, enabling emotionally resonant machine–human interactions. In this paper, we introduce the InfRa (Integrating Discourse Features and Response Assessment) model to address limitations in traditional methods for this task, such as the lack of deep dialogue comprehension and response control. InfRa integrates discourse features to augment structural dialogue understanding, with a novel edge pruning and mutual information learning module to further refine the representation. The model also employs a response evaluation module for dynamic optimization, ensuring emotional and semantic consistency between the generated response and its context. Our experiments demonstrate that InfRa outperforms existing baselines, reducing the Perplexity (PPL) score by approximately 9 points and excelling in all three fine-grained aspects of human evaluation. This research not only advances the development of empathetic chatbots but also provides valuable insights for broader text generation tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信