{"title":"独立序列和混合序列的 Rd 中密度的自适应定向估计器","authors":"Sinda Ammous , Jérôme Dedecker , Céline Duval","doi":"10.1016/j.jmva.2024.105332","DOIUrl":null,"url":null,"abstract":"<div><p>A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, <span><math><mi>α</mi></math></span>-mixing and <span><math><mi>τ</mi></math></span>-mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the <em>best</em> Sobolev regularity of the density of <span><math><mrow><mi>A</mi><mi>X</mi></mrow></math></span>, where <span><math><mi>A</mi></math></span> belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive directional estimator of the density in Rd for independent and mixing sequences\",\"authors\":\"Sinda Ammous , Jérôme Dedecker , Céline Duval\",\"doi\":\"10.1016/j.jmva.2024.105332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, <span><math><mi>α</mi></math></span>-mixing and <span><math><mi>τ</mi></math></span>-mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the <em>best</em> Sobolev regularity of the density of <span><math><mrow><mi>A</mi><mi>X</mi></mrow></math></span>, where <span><math><mi>A</mi></math></span> belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000393\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000393","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
通过对阈值经验特征函数进行傅立叶反演,可以获得一种新的静态序列多元密度估算器。该估计器不依赖于与密度平滑性相关的参数选择;它是直接自适应的。我们建立了适用于独立、α 混合和 τ 混合序列的 oracle 不等式,从而得出了最佳收敛率,但损失不超过对数。在一般各向异性的索博列夫类上,估计器不仅能适应未知密度的规则性,还能实现方向适应性。更准确地说,估计器能够达到 AX 密度的最佳索博列夫正则性所引起的收敛率,其中 A 属于描述所有可能方向的一类可逆矩阵。该估计器易于实现,数值效率高。它取决于一个参数的校准,为此我们提出了一个创新的数值选择程序,使用阈值区域的欧拉特性。
Adaptive directional estimator of the density in Rd for independent and mixing sequences
A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, -mixing and -mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the best Sobolev regularity of the density of , where belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.