独立序列和混合序列的 Rd 中密度的自适应定向估计器

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Sinda Ammous , Jérôme Dedecker , Céline Duval
{"title":"独立序列和混合序列的 Rd 中密度的自适应定向估计器","authors":"Sinda Ammous ,&nbsp;Jérôme Dedecker ,&nbsp;Céline Duval","doi":"10.1016/j.jmva.2024.105332","DOIUrl":null,"url":null,"abstract":"<div><p>A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, <span><math><mi>α</mi></math></span>-mixing and <span><math><mi>τ</mi></math></span>-mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the <em>best</em> Sobolev regularity of the density of <span><math><mrow><mi>A</mi><mi>X</mi></mrow></math></span>, where <span><math><mi>A</mi></math></span> belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"203 ","pages":"Article 105332"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive directional estimator of the density in Rd for independent and mixing sequences\",\"authors\":\"Sinda Ammous ,&nbsp;Jérôme Dedecker ,&nbsp;Céline Duval\",\"doi\":\"10.1016/j.jmva.2024.105332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, <span><math><mi>α</mi></math></span>-mixing and <span><math><mi>τ</mi></math></span>-mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the <em>best</em> Sobolev regularity of the density of <span><math><mrow><mi>A</mi><mi>X</mi></mrow></math></span>, where <span><math><mi>A</mi></math></span> belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"203 \",\"pages\":\"Article 105332\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000393\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000393","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

通过对阈值经验特征函数进行傅立叶反演,可以获得一种新的静态序列多元密度估算器。该估计器不依赖于与密度平滑性相关的参数选择;它是直接自适应的。我们建立了适用于独立、α 混合和 τ 混合序列的 oracle 不等式,从而得出了最佳收敛率,但损失不超过对数。在一般各向异性的索博列夫类上,估计器不仅能适应未知密度的规则性,还能实现方向适应性。更准确地说,估计器能够达到 AX 密度的最佳索博列夫正则性所引起的收敛率,其中 A 属于描述所有可能方向的一类可逆矩阵。该估计器易于实现,数值效率高。它取决于一个参数的校准,为此我们提出了一个创新的数值选择程序,使用阈值区域的欧拉特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive directional estimator of the density in Rd for independent and mixing sequences

A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, α-mixing and τ-mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the best Sobolev regularity of the density of AX, where A belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信