Camila Oliveira de Andrade , Josiane Rodrigues Rocha da Silva , Pablo Americo Barbieri , Luciana Andrea Borin-Carvalho , Ana Luiza de Brito Portela-Castro , Carlos Alexandre Fernandes
{"title":"黄尾四大家鱼(Astyanax lacustris)(Lütken,1875 年)急性接触草甘膦除草剂 Templo® 的影响","authors":"Camila Oliveira de Andrade , Josiane Rodrigues Rocha da Silva , Pablo Americo Barbieri , Luciana Andrea Borin-Carvalho , Ana Luiza de Brito Portela-Castro , Carlos Alexandre Fernandes","doi":"10.1016/j.mrgentox.2024.503771","DOIUrl":null,"url":null,"abstract":"<div><p>The herbicide glyphosate (N-(phosphonomethyl)glycine) efficiently eliminates weeds, is frequently present in surface waters, and may damage the health of various non-target organisms. The main objective of this study was to investigate cytotoxic and genotoxic effects in erythrocytes, DNA, and chromosomes of native South American fish <em>Astyanax lacustris</em> exposed to a glyphosate-based commercial herbicide Templo®. The presenty study evaluated the presence of micronuclei (MN), chromosomal aberrations (CA), DNA damage revealed by comet assay, and cellular morphological changes (CMC) as biomarkers. The <em>A. lacustris</em> specimens were exposed to Templo® for 96 h at concentrations below the permitted Brazilian legislation for freshwater environments. The glyphosate-based herbicide caused MN formation, an increased incidence of CA, DNA damage, and several types of CMC in all tested concentrations on <em>A. lacustris</em>. Notably, analyses were significant (p<0.05) for all concentrations, except in the frequency mean of MN at 3.7 µg/L. Thus, considering the intensive use of commercial glyphosate formulations in crops, the herbicide Templo® represents a potential risk of genotoxicity and cytotoxicity for aquatic organisms. Therefore, environmental protection agencies must review regulations for glyphosate-based herbicides in freshwater environments.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"897 ","pages":"Article 503771"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of acute exposure of yellowtail tetra fish Astyanax lacustris (Lütken, 1875) to the glyphosate-based herbicide Templo®\",\"authors\":\"Camila Oliveira de Andrade , Josiane Rodrigues Rocha da Silva , Pablo Americo Barbieri , Luciana Andrea Borin-Carvalho , Ana Luiza de Brito Portela-Castro , Carlos Alexandre Fernandes\",\"doi\":\"10.1016/j.mrgentox.2024.503771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The herbicide glyphosate (N-(phosphonomethyl)glycine) efficiently eliminates weeds, is frequently present in surface waters, and may damage the health of various non-target organisms. The main objective of this study was to investigate cytotoxic and genotoxic effects in erythrocytes, DNA, and chromosomes of native South American fish <em>Astyanax lacustris</em> exposed to a glyphosate-based commercial herbicide Templo®. The presenty study evaluated the presence of micronuclei (MN), chromosomal aberrations (CA), DNA damage revealed by comet assay, and cellular morphological changes (CMC) as biomarkers. The <em>A. lacustris</em> specimens were exposed to Templo® for 96 h at concentrations below the permitted Brazilian legislation for freshwater environments. The glyphosate-based herbicide caused MN formation, an increased incidence of CA, DNA damage, and several types of CMC in all tested concentrations on <em>A. lacustris</em>. Notably, analyses were significant (p<0.05) for all concentrations, except in the frequency mean of MN at 3.7 µg/L. Thus, considering the intensive use of commercial glyphosate formulations in crops, the herbicide Templo® represents a potential risk of genotoxicity and cytotoxicity for aquatic organisms. Therefore, environmental protection agencies must review regulations for glyphosate-based herbicides in freshwater environments.</p></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"897 \",\"pages\":\"Article 503771\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571824000470\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824000470","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The effect of acute exposure of yellowtail tetra fish Astyanax lacustris (Lütken, 1875) to the glyphosate-based herbicide Templo®
The herbicide glyphosate (N-(phosphonomethyl)glycine) efficiently eliminates weeds, is frequently present in surface waters, and may damage the health of various non-target organisms. The main objective of this study was to investigate cytotoxic and genotoxic effects in erythrocytes, DNA, and chromosomes of native South American fish Astyanax lacustris exposed to a glyphosate-based commercial herbicide Templo®. The presenty study evaluated the presence of micronuclei (MN), chromosomal aberrations (CA), DNA damage revealed by comet assay, and cellular morphological changes (CMC) as biomarkers. The A. lacustris specimens were exposed to Templo® for 96 h at concentrations below the permitted Brazilian legislation for freshwater environments. The glyphosate-based herbicide caused MN formation, an increased incidence of CA, DNA damage, and several types of CMC in all tested concentrations on A. lacustris. Notably, analyses were significant (p<0.05) for all concentrations, except in the frequency mean of MN at 3.7 µg/L. Thus, considering the intensive use of commercial glyphosate formulations in crops, the herbicide Templo® represents a potential risk of genotoxicity and cytotoxicity for aquatic organisms. Therefore, environmental protection agencies must review regulations for glyphosate-based herbicides in freshwater environments.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.