Wei-Bin Hu , Yi-Ting Liu , Jing Li , Ying Wang , Xuan-Zi Sun , Ming-Yu Hua , Xue-Ting Liu , Bei-Na Hui
{"title":"Pristimerin 通过增加人食管癌细胞细胞内 ROS 的产生,诱导 ER 应激和 AKT/GSK3β 通路,从而表现出抗癌活性。","authors":"Wei-Bin Hu , Yi-Ting Liu , Jing Li , Ying Wang , Xuan-Zi Sun , Ming-Yu Hua , Xue-Ting Liu , Bei-Na Hui","doi":"10.1016/j.tiv.2024.105867","DOIUrl":null,"url":null,"abstract":"<div><p>Pristimerin (Pris), a bioactive triterpenoid compound extracted from the <em>Celastraceae</em> and <em>Hippocrateaceae</em> families, has been reported to exhibit an anti-cancer property on various cancers. However, the effects of Pris on esophageal cancer are poorly investigated. This current study sought to explore the activity and underlying mechanism of Pris against human esophageal squamous cell carcinoma (ESCC) cells. We demonstrated that Pris showed cytotoxicity in TE-1 and TE-10 ESCC cell lines, and significantly inhibited cell viability in a concentration dependent manner. Pris induced G0/G1 phase arrest and triggered apoptosis. It was also observed that the intracellular ROS level was remarkedly increased by Pris treatment. Besides, the function of Pris mediating the activation of ER stress and the inhibition of AKT/GSK3β signaling pathway in TE-1 and TE-10 cells was further confirmed, which resulted in cell growth inhibition. And moreover, we revealed that all of the above pathways were regulated through ROS generation. In conclusion, our findings suggested that Pris might be considered as a novel natural compound for the developing anti-cancer drug candidate for human esophageal cancer.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105867"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pristimerin exhibits anti-cancer activity by inducing ER stress and AKT/GSK3β pathway through increasing intracellular ROS production in human esophageal cancer cells\",\"authors\":\"Wei-Bin Hu , Yi-Ting Liu , Jing Li , Ying Wang , Xuan-Zi Sun , Ming-Yu Hua , Xue-Ting Liu , Bei-Na Hui\",\"doi\":\"10.1016/j.tiv.2024.105867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pristimerin (Pris), a bioactive triterpenoid compound extracted from the <em>Celastraceae</em> and <em>Hippocrateaceae</em> families, has been reported to exhibit an anti-cancer property on various cancers. However, the effects of Pris on esophageal cancer are poorly investigated. This current study sought to explore the activity and underlying mechanism of Pris against human esophageal squamous cell carcinoma (ESCC) cells. We demonstrated that Pris showed cytotoxicity in TE-1 and TE-10 ESCC cell lines, and significantly inhibited cell viability in a concentration dependent manner. Pris induced G0/G1 phase arrest and triggered apoptosis. It was also observed that the intracellular ROS level was remarkedly increased by Pris treatment. Besides, the function of Pris mediating the activation of ER stress and the inhibition of AKT/GSK3β signaling pathway in TE-1 and TE-10 cells was further confirmed, which resulted in cell growth inhibition. And moreover, we revealed that all of the above pathways were regulated through ROS generation. In conclusion, our findings suggested that Pris might be considered as a novel natural compound for the developing anti-cancer drug candidate for human esophageal cancer.</p></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"99 \",\"pages\":\"Article 105867\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233324000973\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324000973","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Pristimerin exhibits anti-cancer activity by inducing ER stress and AKT/GSK3β pathway through increasing intracellular ROS production in human esophageal cancer cells
Pristimerin (Pris), a bioactive triterpenoid compound extracted from the Celastraceae and Hippocrateaceae families, has been reported to exhibit an anti-cancer property on various cancers. However, the effects of Pris on esophageal cancer are poorly investigated. This current study sought to explore the activity and underlying mechanism of Pris against human esophageal squamous cell carcinoma (ESCC) cells. We demonstrated that Pris showed cytotoxicity in TE-1 and TE-10 ESCC cell lines, and significantly inhibited cell viability in a concentration dependent manner. Pris induced G0/G1 phase arrest and triggered apoptosis. It was also observed that the intracellular ROS level was remarkedly increased by Pris treatment. Besides, the function of Pris mediating the activation of ER stress and the inhibition of AKT/GSK3β signaling pathway in TE-1 and TE-10 cells was further confirmed, which resulted in cell growth inhibition. And moreover, we revealed that all of the above pathways were regulated through ROS generation. In conclusion, our findings suggested that Pris might be considered as a novel natural compound for the developing anti-cancer drug candidate for human esophageal cancer.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.