利用无血浆细胞 DNA 片段组图谱对结直肠癌进行早期检测和分层。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiyuan Zhou , Yuanke Pan , Shubing Wang , Guoqiang Wang , Chengxin Gu , Jinxin Zhu , Zhenlin Tan , Qixian Wu , Weihuang He , Xiaohui Lin , Shu Xu , Kehua Yuan , Ziwen Zheng , Xiaoqing Gong , Chenhao JiangHe , Zhoujian Han , Bingding Huang , Ruyun Ruan , Mingji Feng , Pin Cui , Hui Yang
{"title":"利用无血浆细胞 DNA 片段组图谱对结直肠癌进行早期检测和分层。","authors":"Jiyuan Zhou ,&nbsp;Yuanke Pan ,&nbsp;Shubing Wang ,&nbsp;Guoqiang Wang ,&nbsp;Chengxin Gu ,&nbsp;Jinxin Zhu ,&nbsp;Zhenlin Tan ,&nbsp;Qixian Wu ,&nbsp;Weihuang He ,&nbsp;Xiaohui Lin ,&nbsp;Shu Xu ,&nbsp;Kehua Yuan ,&nbsp;Ziwen Zheng ,&nbsp;Xiaoqing Gong ,&nbsp;Chenhao JiangHe ,&nbsp;Zhoujian Han ,&nbsp;Bingding Huang ,&nbsp;Ruyun Ruan ,&nbsp;Mingji Feng ,&nbsp;Pin Cui ,&nbsp;Hui Yang","doi":"10.1016/j.ygeno.2024.110876","DOIUrl":null,"url":null,"abstract":"<div><p>Timely accurate and cost-efficient detection of colorectal cancer (CRC) is of great clinical importance. This study aims to establish prediction models for detecting CRC using plasma cell-free DNA (cfDNA) fragmentomic features. Whole-genome sequencing (WGS) was performed on cfDNA from 620 participants, including healthy individuals, patients with benign colorectal diseases and CRC patients. Using WGS data, three machine learning methods were compared to build prediction models for the stratification of CRC patients. The optimal model to discriminate CRC patients of all stages from healthy individuals achieved a sensitivity of 92.31% and a specificity of 91.14%, while the model to separate early-stage CRC patients (stage 0-II) from healthy individuals achieved a sensitivity of 88.8% and a specificity of 96.2%. Additionally, the cfDNA fragmentation profiles reflected disease-specific genomic alterations in CRC. Overall, this study suggests that cfDNA fragmentation profiles may potentially become a noninvasive approach for the detection and stratification of CRC.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324000971/pdfft?md5=9215668aa701ceca2567affa9cc981f2&pid=1-s2.0-S0888754324000971-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Early detection and stratification of colorectal cancer using plasma cell-free DNA fragmentomic profiling\",\"authors\":\"Jiyuan Zhou ,&nbsp;Yuanke Pan ,&nbsp;Shubing Wang ,&nbsp;Guoqiang Wang ,&nbsp;Chengxin Gu ,&nbsp;Jinxin Zhu ,&nbsp;Zhenlin Tan ,&nbsp;Qixian Wu ,&nbsp;Weihuang He ,&nbsp;Xiaohui Lin ,&nbsp;Shu Xu ,&nbsp;Kehua Yuan ,&nbsp;Ziwen Zheng ,&nbsp;Xiaoqing Gong ,&nbsp;Chenhao JiangHe ,&nbsp;Zhoujian Han ,&nbsp;Bingding Huang ,&nbsp;Ruyun Ruan ,&nbsp;Mingji Feng ,&nbsp;Pin Cui ,&nbsp;Hui Yang\",\"doi\":\"10.1016/j.ygeno.2024.110876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Timely accurate and cost-efficient detection of colorectal cancer (CRC) is of great clinical importance. This study aims to establish prediction models for detecting CRC using plasma cell-free DNA (cfDNA) fragmentomic features. Whole-genome sequencing (WGS) was performed on cfDNA from 620 participants, including healthy individuals, patients with benign colorectal diseases and CRC patients. Using WGS data, three machine learning methods were compared to build prediction models for the stratification of CRC patients. The optimal model to discriminate CRC patients of all stages from healthy individuals achieved a sensitivity of 92.31% and a specificity of 91.14%, while the model to separate early-stage CRC patients (stage 0-II) from healthy individuals achieved a sensitivity of 88.8% and a specificity of 96.2%. Additionally, the cfDNA fragmentation profiles reflected disease-specific genomic alterations in CRC. Overall, this study suggests that cfDNA fragmentation profiles may potentially become a noninvasive approach for the detection and stratification of CRC.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888754324000971/pdfft?md5=9215668aa701ceca2567affa9cc981f2&pid=1-s2.0-S0888754324000971-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324000971\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324000971","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

及时准确、经济高效地检测出结直肠癌(CRC)具有重要的临床意义。本研究旨在利用血浆无细胞 DNA(cfDNA)片段组特征建立检测 CRC 的预测模型。研究人员对620名参与者的cfDNA进行了全基因组测序(WGS),其中包括健康人、良性结直肠疾病患者和CRC患者。利用 WGS 数据,比较了三种机器学习方法,以建立对 CRC 患者进行分层的预测模型。区分各期 CRC 患者与健康人的最佳模型灵敏度为 92.31%,特异度为 91.14%;区分早期 CRC 患者(0-II 期)与健康人的模型灵敏度为 88.8%,特异度为 96.2%。此外,cfDNA 片段图谱还反映了 CRC 中特定疾病的基因组改变。总之,这项研究表明,cfDNA 片段图谱有可能成为检测和分层 CRC 的一种无创方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early detection and stratification of colorectal cancer using plasma cell-free DNA fragmentomic profiling

Timely accurate and cost-efficient detection of colorectal cancer (CRC) is of great clinical importance. This study aims to establish prediction models for detecting CRC using plasma cell-free DNA (cfDNA) fragmentomic features. Whole-genome sequencing (WGS) was performed on cfDNA from 620 participants, including healthy individuals, patients with benign colorectal diseases and CRC patients. Using WGS data, three machine learning methods were compared to build prediction models for the stratification of CRC patients. The optimal model to discriminate CRC patients of all stages from healthy individuals achieved a sensitivity of 92.31% and a specificity of 91.14%, while the model to separate early-stage CRC patients (stage 0-II) from healthy individuals achieved a sensitivity of 88.8% and a specificity of 96.2%. Additionally, the cfDNA fragmentation profiles reflected disease-specific genomic alterations in CRC. Overall, this study suggests that cfDNA fragmentation profiles may potentially become a noninvasive approach for the detection and stratification of CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信