{"title":"集成物理模型和连续时间状态空间神经网络模型的混合结构分析","authors":"Hong-Wei Li, Shuo Hao, Yi-Qing Ni, You-Wu Wang, Zhao-Dong Xu","doi":"10.1111/mice.13282","DOIUrl":null,"url":null,"abstract":"The most likely scenario for civil engineering structures is that only some components or parts of a structure are complex, while the rest of the structure can be well physically modeled. In this case, utilizing powerful neural networks to model these complex components or parts only and embedding the neural network models into the structure might be a viable choice. However, few studies have considered the real-time interaction between the neural network model and another model. In this paper, a new hybrid structural modeling strategy that incorporates the neural network model is proposed. Structures installed with energy dissipation devices (EDDs) are investigated, where continuous-time state-space neural network (CSNN) models are adopted to represent EDDs and to couple with the physical model of the structure excluding EDDs through the state-space substructuring method. First, CSNN models with an identical model configuration are trained to represent different physical models of EDDs and fit the experimental results of a damper to evaluate the CSNN model at the model level. Then, to demonstrate the hybrid structural analysis method, the CSNN-based structural models of the interfloor-damped and base-isolated structures are established for seismic analyses. It is observed that CSNN-based models exhibit high prediction performance and are easy to implement. Therefore, the developed hybrid structural analysis method that adopts CSNN models for EDDs is engineering practical.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"16 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid structural analysis integrating physical model and continuous-time state-space neural network model\",\"authors\":\"Hong-Wei Li, Shuo Hao, Yi-Qing Ni, You-Wu Wang, Zhao-Dong Xu\",\"doi\":\"10.1111/mice.13282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most likely scenario for civil engineering structures is that only some components or parts of a structure are complex, while the rest of the structure can be well physically modeled. In this case, utilizing powerful neural networks to model these complex components or parts only and embedding the neural network models into the structure might be a viable choice. However, few studies have considered the real-time interaction between the neural network model and another model. In this paper, a new hybrid structural modeling strategy that incorporates the neural network model is proposed. Structures installed with energy dissipation devices (EDDs) are investigated, where continuous-time state-space neural network (CSNN) models are adopted to represent EDDs and to couple with the physical model of the structure excluding EDDs through the state-space substructuring method. First, CSNN models with an identical model configuration are trained to represent different physical models of EDDs and fit the experimental results of a damper to evaluate the CSNN model at the model level. Then, to demonstrate the hybrid structural analysis method, the CSNN-based structural models of the interfloor-damped and base-isolated structures are established for seismic analyses. It is observed that CSNN-based models exhibit high prediction performance and are easy to implement. Therefore, the developed hybrid structural analysis method that adopts CSNN models for EDDs is engineering practical.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13282\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13282","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hybrid structural analysis integrating physical model and continuous-time state-space neural network model
The most likely scenario for civil engineering structures is that only some components or parts of a structure are complex, while the rest of the structure can be well physically modeled. In this case, utilizing powerful neural networks to model these complex components or parts only and embedding the neural network models into the structure might be a viable choice. However, few studies have considered the real-time interaction between the neural network model and another model. In this paper, a new hybrid structural modeling strategy that incorporates the neural network model is proposed. Structures installed with energy dissipation devices (EDDs) are investigated, where continuous-time state-space neural network (CSNN) models are adopted to represent EDDs and to couple with the physical model of the structure excluding EDDs through the state-space substructuring method. First, CSNN models with an identical model configuration are trained to represent different physical models of EDDs and fit the experimental results of a damper to evaluate the CSNN model at the model level. Then, to demonstrate the hybrid structural analysis method, the CSNN-based structural models of the interfloor-damped and base-isolated structures are established for seismic analyses. It is observed that CSNN-based models exhibit high prediction performance and are easy to implement. Therefore, the developed hybrid structural analysis method that adopts CSNN models for EDDs is engineering practical.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.