Shuanggen Liu , Yingzi Hu , Xu An Wang , Xukai Liu , Yuqing Yin , Teng Wang
{"title":"基于可标点的广播加密与跟踪,防止云文件共享中的恶意加密者","authors":"Shuanggen Liu , Yingzi Hu , Xu An Wang , Xukai Liu , Yuqing Yin , Teng Wang","doi":"10.1016/j.jisa.2024.103803","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud file sharing (CFS) in cloud storage is one of the essential tools for enterprises to improve their core competitiveness. In the sharing process, user dynamic management and players/readers abuse has always been a problem that needs to be solved, but malicious encryptors are also a new challenge. Therefore, preventing malicious encryption is another way to protect copyright issues. This scheme proposes a traitor tracing scheme with puncturable-based broadcast encryption in cloud storage, which is an improved scheme proposed in Ref. Garg et al. (2010). Based on the original completely collusion resistant traitor tracing scheme, the uniform distribution of hash output is used to prevent malicious encryptors. In addition, users can perform authentication during the decryption phase to prevent replay attacks. At the same time, the puncture algorithm is introduced, so that normal users can dynamically revoke themselves without affecting the normal use of other users. We prove that the scheme is secure under chosen plaintext attack (CPA). Theoretical analysis also shows that our scheme can prevent malicious encryptors in cloud file sharing and allow normal users to dynamically revoke. After experimental verification, our scheme offers distinct advantages over the existing one.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"84 ","pages":"Article 103803"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Puncturable-based broadcast encryption with tracking for preventing malicious encryptors in cloud file sharing\",\"authors\":\"Shuanggen Liu , Yingzi Hu , Xu An Wang , Xukai Liu , Yuqing Yin , Teng Wang\",\"doi\":\"10.1016/j.jisa.2024.103803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cloud file sharing (CFS) in cloud storage is one of the essential tools for enterprises to improve their core competitiveness. In the sharing process, user dynamic management and players/readers abuse has always been a problem that needs to be solved, but malicious encryptors are also a new challenge. Therefore, preventing malicious encryption is another way to protect copyright issues. This scheme proposes a traitor tracing scheme with puncturable-based broadcast encryption in cloud storage, which is an improved scheme proposed in Ref. Garg et al. (2010). Based on the original completely collusion resistant traitor tracing scheme, the uniform distribution of hash output is used to prevent malicious encryptors. In addition, users can perform authentication during the decryption phase to prevent replay attacks. At the same time, the puncture algorithm is introduced, so that normal users can dynamically revoke themselves without affecting the normal use of other users. We prove that the scheme is secure under chosen plaintext attack (CPA). Theoretical analysis also shows that our scheme can prevent malicious encryptors in cloud file sharing and allow normal users to dynamically revoke. After experimental verification, our scheme offers distinct advantages over the existing one.</p></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"84 \",\"pages\":\"Article 103803\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212624001066\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001066","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Puncturable-based broadcast encryption with tracking for preventing malicious encryptors in cloud file sharing
Cloud file sharing (CFS) in cloud storage is one of the essential tools for enterprises to improve their core competitiveness. In the sharing process, user dynamic management and players/readers abuse has always been a problem that needs to be solved, but malicious encryptors are also a new challenge. Therefore, preventing malicious encryption is another way to protect copyright issues. This scheme proposes a traitor tracing scheme with puncturable-based broadcast encryption in cloud storage, which is an improved scheme proposed in Ref. Garg et al. (2010). Based on the original completely collusion resistant traitor tracing scheme, the uniform distribution of hash output is used to prevent malicious encryptors. In addition, users can perform authentication during the decryption phase to prevent replay attacks. At the same time, the puncture algorithm is introduced, so that normal users can dynamically revoke themselves without affecting the normal use of other users. We prove that the scheme is secure under chosen plaintext attack (CPA). Theoretical analysis also shows that our scheme can prevent malicious encryptors in cloud file sharing and allow normal users to dynamically revoke. After experimental verification, our scheme offers distinct advantages over the existing one.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.