多巴胺β-羟化酶通过调节T细胞活化形成肠道炎症

IF 3.7 4区 医学 Q2 CELL BIOLOGY
Qiaoling Sun , Heng Li , Jing Lv , Weilin Shi , Yanfeng Bai , Ke Pan , Alice Chen
{"title":"多巴胺β-羟化酶通过调节T细胞活化形成肠道炎症","authors":"Qiaoling Sun ,&nbsp;Heng Li ,&nbsp;Jing Lv ,&nbsp;Weilin Shi ,&nbsp;Yanfeng Bai ,&nbsp;Ke Pan ,&nbsp;Alice Chen","doi":"10.1016/j.cellimm.2024.104839","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Inflammatory bowel disease (IBD) is a chronic and relapsing disease characterized by immune-mediated dysfunction of intestinal homeostasis. Alteration of the enteric nervous system and the subsequent neuro-immune interaction are thought to contribute to the initiation and progression of IBD. However, the role of dopamine beta-hydroxylase (DBH), an enzyme converting dopamine into norepinephrine, in modulating intestinal inflammation is not well defined.</p></div><div><h3>Methods</h3><p>CD4<sup>+</sup>CD45RB<sup>high</sup>T cell adoptive transfer, and 2,4-dinitrobenzene sulfonic acid (DNBS) or dextran sodium sulfate (DSS)-induced colitis were collectively conducted to uncover the effects of DBH inhibition by nepicastat, a DBH inhibitor, in mucosal ulceration, disease severity, and T cell function.</p></div><div><h3>Results</h3><p>Inhibition of DBH by nepicastat triggered therapeutic effects on T cell adoptive transfer induced chronic mouse colitis model, which was consistent with the gene expression of DBH in multiple cell populations including T cells. Furthermore, DBH inhibition dramatically ameliorated the disease activity and colon shortening in chemically induced acute and chronic IBD models, as evidenced by morphological and histological examinations. The reshaped systemic inflammatory status was largely associated with decreased pro-inflammatory mediators, such as TNF-α, IL-6 and IFN-γ in plasma and re-balanced Th1, Th17 and Tregs in mesenteric lymph nodes (MLNs) upon colitis progression. Additionally, the conversion from dopamine (DA) to norepinephrine (NE) was inhibited resulting in increase in DA level and decrease in NE level and DA/NE showed immune-modulatory effects on the activation of immune cells.</p></div><div><h3>Conclusion</h3><p>Modulation of neurotransmitter levels via inhibition of DBH exerted protective effects on progression of murine colitis by modulating the neuro-immune axis. These findings suggested a promising new therapeutic strategy for attenuating intestinal inflammation.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"401 ","pages":"Article 104839"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dopamine β-hydroxylase shapes intestinal inflammation through modulating T cell activation\",\"authors\":\"Qiaoling Sun ,&nbsp;Heng Li ,&nbsp;Jing Lv ,&nbsp;Weilin Shi ,&nbsp;Yanfeng Bai ,&nbsp;Ke Pan ,&nbsp;Alice Chen\",\"doi\":\"10.1016/j.cellimm.2024.104839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Inflammatory bowel disease (IBD) is a chronic and relapsing disease characterized by immune-mediated dysfunction of intestinal homeostasis. Alteration of the enteric nervous system and the subsequent neuro-immune interaction are thought to contribute to the initiation and progression of IBD. However, the role of dopamine beta-hydroxylase (DBH), an enzyme converting dopamine into norepinephrine, in modulating intestinal inflammation is not well defined.</p></div><div><h3>Methods</h3><p>CD4<sup>+</sup>CD45RB<sup>high</sup>T cell adoptive transfer, and 2,4-dinitrobenzene sulfonic acid (DNBS) or dextran sodium sulfate (DSS)-induced colitis were collectively conducted to uncover the effects of DBH inhibition by nepicastat, a DBH inhibitor, in mucosal ulceration, disease severity, and T cell function.</p></div><div><h3>Results</h3><p>Inhibition of DBH by nepicastat triggered therapeutic effects on T cell adoptive transfer induced chronic mouse colitis model, which was consistent with the gene expression of DBH in multiple cell populations including T cells. Furthermore, DBH inhibition dramatically ameliorated the disease activity and colon shortening in chemically induced acute and chronic IBD models, as evidenced by morphological and histological examinations. The reshaped systemic inflammatory status was largely associated with decreased pro-inflammatory mediators, such as TNF-α, IL-6 and IFN-γ in plasma and re-balanced Th1, Th17 and Tregs in mesenteric lymph nodes (MLNs) upon colitis progression. Additionally, the conversion from dopamine (DA) to norepinephrine (NE) was inhibited resulting in increase in DA level and decrease in NE level and DA/NE showed immune-modulatory effects on the activation of immune cells.</p></div><div><h3>Conclusion</h3><p>Modulation of neurotransmitter levels via inhibition of DBH exerted protective effects on progression of murine colitis by modulating the neuro-immune axis. These findings suggested a promising new therapeutic strategy for attenuating intestinal inflammation.</p></div>\",\"PeriodicalId\":9795,\"journal\":{\"name\":\"Cellular immunology\",\"volume\":\"401 \",\"pages\":\"Article 104839\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000887492400042X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000887492400042X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景炎症性肠病(IBD)是一种以免疫介导的肠道平衡失调为特征的慢性复发性疾病。肠道神经系统的改变以及随后的神经-免疫相互作用被认为是导致 IBD 发病和恶化的原因。然而,多巴胺 beta- 羟化酶(DBH)是一种将多巴胺转化为去甲肾上腺素的酶,它在调节肠道炎症中的作用尚未明确。方法CD4+CD45RBhighT细胞收养转移和2,4-二硝基苯磺酸(DNBS)或右旋糖酐硫酸钠(DSS)诱导的结肠炎共同进行研究,以揭示DBH抑制剂奈皮卡司他抑制DBH对粘膜溃疡、疾病严重程度和T细胞功能的影响。结果奈皮卡司他抑制 DBH 对 T 细胞收养转移诱导的慢性小鼠结肠炎模型有治疗作用,这与 DBH 在包括 T 细胞在内的多种细胞群中的基因表达一致。此外,在化学诱导的急性和慢性 IBD 模型中,抑制 DBH 能显著改善疾病活动和结肠缩短,形态学和组织学检查也证明了这一点。全身炎症状态的重塑主要与血浆中促炎介质(如 TNF-α、IL-6 和 IFN-γ)的减少以及结肠炎进展时肠系膜淋巴结(MLNs)中 Th1、Th17 和 Tregs 的重新平衡有关。此外,多巴胺(DA)向去甲肾上腺素(NE)的转化受到抑制,导致 DA 水平升高,NE 水平降低,DA/NE 对免疫细胞的活化具有免疫调节作用。这些发现为减轻肠道炎症提供了一种前景广阔的新治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dopamine β-hydroxylase shapes intestinal inflammation through modulating T cell activation

Background

Inflammatory bowel disease (IBD) is a chronic and relapsing disease characterized by immune-mediated dysfunction of intestinal homeostasis. Alteration of the enteric nervous system and the subsequent neuro-immune interaction are thought to contribute to the initiation and progression of IBD. However, the role of dopamine beta-hydroxylase (DBH), an enzyme converting dopamine into norepinephrine, in modulating intestinal inflammation is not well defined.

Methods

CD4+CD45RBhighT cell adoptive transfer, and 2,4-dinitrobenzene sulfonic acid (DNBS) or dextran sodium sulfate (DSS)-induced colitis were collectively conducted to uncover the effects of DBH inhibition by nepicastat, a DBH inhibitor, in mucosal ulceration, disease severity, and T cell function.

Results

Inhibition of DBH by nepicastat triggered therapeutic effects on T cell adoptive transfer induced chronic mouse colitis model, which was consistent with the gene expression of DBH in multiple cell populations including T cells. Furthermore, DBH inhibition dramatically ameliorated the disease activity and colon shortening in chemically induced acute and chronic IBD models, as evidenced by morphological and histological examinations. The reshaped systemic inflammatory status was largely associated with decreased pro-inflammatory mediators, such as TNF-α, IL-6 and IFN-γ in plasma and re-balanced Th1, Th17 and Tregs in mesenteric lymph nodes (MLNs) upon colitis progression. Additionally, the conversion from dopamine (DA) to norepinephrine (NE) was inhibited resulting in increase in DA level and decrease in NE level and DA/NE showed immune-modulatory effects on the activation of immune cells.

Conclusion

Modulation of neurotransmitter levels via inhibition of DBH exerted protective effects on progression of murine colitis by modulating the neuro-immune axis. These findings suggested a promising new therapeutic strategy for attenuating intestinal inflammation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular immunology
Cellular immunology 生物-免疫学
CiteScore
8.20
自引率
2.30%
发文量
102
审稿时长
30 days
期刊介绍: Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered. Research Areas include: • Antigen receptor sites • Autoimmunity • Delayed-type hypersensitivity or cellular immunity • Immunologic deficiency states and their reconstitution • Immunologic surveillance and tumor immunity • Immunomodulation • Immunotherapy • Lymphokines and cytokines • Nonantibody immunity • Parasite immunology • Resistance to intracellular microbial and viral infection • Thymus and lymphocyte immunobiology • Transplantation immunology • Tumor immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信