Kwang-Sig Lee, Su Jin Kim, Dong Cheol Kim, Sang-Hyun Park, Dong-Hyun Jang, Eung Hwi Kim, YoungShin Kang, Sijin Lee, Sung Woo Lee
{"title":"基于机器学习的多模态脑氧饱和度预测。","authors":"Kwang-Sig Lee, Su Jin Kim, Dong Cheol Kim, Sang-Hyun Park, Dong-Hyun Jang, Eung Hwi Kim, YoungShin Kang, Sijin Lee, Sung Woo Lee","doi":"10.1177/14604582241259341","DOIUrl":null,"url":null,"abstract":"<p><p>This study develops machine learning-based algorithms that facilitate accurate prediction of cerebral oxygen saturation using waveform data in the near-infrared range from a multi-modal oxygen saturation sensor. Data were obtained from 150,000 observations of a popular cerebral oximeter, Masimo O3™ regional oximetry (Co., United States) and a multi-modal cerebral oximeter, Votem (Inc., Korea). Among these observations, 112,500 (75%) and 37,500 (25%) were used for training and test sets, respectively. The dependent variable was the cerebral oxygen saturation value from the Masimo O3™ (0-100%). The independent variables were the time of measurement (0-300,000 ms) and the 16-bit decimal amplitudes values (infrared and red) from Votem (0-65,535). For the right part of the forehead, the root mean square error of the random forest (0.06) was much smaller than those of linear regression (1.22) and the artificial neural network with one, two or three hidden layers (2.58). The result was similar for the left part of forehead, that is, random forest (0.05) vs logistic regression (1.22) and the artificial neural network with one, two or three hidden layers (2.97). Machine learning aids in accurately predicting of cerebral oxygen saturation, employing the data from a multi-modal cerebral oximeter.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"30 2","pages":"14604582241259341"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based prediction of cerebral oxygen saturation based on multi-modal cerebral oximetry data.\",\"authors\":\"Kwang-Sig Lee, Su Jin Kim, Dong Cheol Kim, Sang-Hyun Park, Dong-Hyun Jang, Eung Hwi Kim, YoungShin Kang, Sijin Lee, Sung Woo Lee\",\"doi\":\"10.1177/14604582241259341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study develops machine learning-based algorithms that facilitate accurate prediction of cerebral oxygen saturation using waveform data in the near-infrared range from a multi-modal oxygen saturation sensor. Data were obtained from 150,000 observations of a popular cerebral oximeter, Masimo O3™ regional oximetry (Co., United States) and a multi-modal cerebral oximeter, Votem (Inc., Korea). Among these observations, 112,500 (75%) and 37,500 (25%) were used for training and test sets, respectively. The dependent variable was the cerebral oxygen saturation value from the Masimo O3™ (0-100%). The independent variables were the time of measurement (0-300,000 ms) and the 16-bit decimal amplitudes values (infrared and red) from Votem (0-65,535). For the right part of the forehead, the root mean square error of the random forest (0.06) was much smaller than those of linear regression (1.22) and the artificial neural network with one, two or three hidden layers (2.58). The result was similar for the left part of forehead, that is, random forest (0.05) vs logistic regression (1.22) and the artificial neural network with one, two or three hidden layers (2.97). Machine learning aids in accurately predicting of cerebral oxygen saturation, employing the data from a multi-modal cerebral oximeter.</p>\",\"PeriodicalId\":55069,\"journal\":{\"name\":\"Health Informatics Journal\",\"volume\":\"30 2\",\"pages\":\"14604582241259341\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Informatics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/14604582241259341\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241259341","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Machine learning-based prediction of cerebral oxygen saturation based on multi-modal cerebral oximetry data.
This study develops machine learning-based algorithms that facilitate accurate prediction of cerebral oxygen saturation using waveform data in the near-infrared range from a multi-modal oxygen saturation sensor. Data were obtained from 150,000 observations of a popular cerebral oximeter, Masimo O3™ regional oximetry (Co., United States) and a multi-modal cerebral oximeter, Votem (Inc., Korea). Among these observations, 112,500 (75%) and 37,500 (25%) were used for training and test sets, respectively. The dependent variable was the cerebral oxygen saturation value from the Masimo O3™ (0-100%). The independent variables were the time of measurement (0-300,000 ms) and the 16-bit decimal amplitudes values (infrared and red) from Votem (0-65,535). For the right part of the forehead, the root mean square error of the random forest (0.06) was much smaller than those of linear regression (1.22) and the artificial neural network with one, two or three hidden layers (2.58). The result was similar for the left part of forehead, that is, random forest (0.05) vs logistic regression (1.22) and the artificial neural network with one, two or three hidden layers (2.97). Machine learning aids in accurately predicting of cerebral oxygen saturation, employing the data from a multi-modal cerebral oximeter.
期刊介绍:
Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.