使用 NLP 模型对放射学报告中的前列腺癌恶性程度评分进行自动文本分类。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jaime Collado-Montañez, Pilar López-Úbeda, Mariia Chizhikova, M Carlos Díaz-Galiano, L Alfonso Ureña-López, Teodoro Martín-Noguerol, Antonio Luna, M Teresa Martín-Valdivia
{"title":"使用 NLP 模型对放射学报告中的前列腺癌恶性程度评分进行自动文本分类。","authors":"Jaime Collado-Montañez, Pilar López-Úbeda, Mariia Chizhikova, M Carlos Díaz-Galiano, L Alfonso Ureña-López, Teodoro Martín-Noguerol, Antonio Luna, M Teresa Martín-Valdivia","doi":"10.1007/s11517-024-03131-x","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the implementation of two automated text classification systems for prostate cancer findings based on the PI-RADS criteria. Specifically, a traditional machine learning model using XGBoost and a language model-based approach using RoBERTa were employed. The study focused on Spanish-language radiological MRI prostate reports, which has not been explored before. The results demonstrate that the RoBERTa model outperforms the XGBoost model, although both achieve promising results. Furthermore, the best-performing system was integrated into the radiological company's information systems as an API, operating in a real-world environment.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485118/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic text classification of prostate cancer malignancy scores in radiology reports using NLP models.\",\"authors\":\"Jaime Collado-Montañez, Pilar López-Úbeda, Mariia Chizhikova, M Carlos Díaz-Galiano, L Alfonso Ureña-López, Teodoro Martín-Noguerol, Antonio Luna, M Teresa Martín-Valdivia\",\"doi\":\"10.1007/s11517-024-03131-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the implementation of two automated text classification systems for prostate cancer findings based on the PI-RADS criteria. Specifically, a traditional machine learning model using XGBoost and a language model-based approach using RoBERTa were employed. The study focused on Spanish-language radiological MRI prostate reports, which has not been explored before. The results demonstrate that the RoBERTa model outperforms the XGBoost model, although both achieve promising results. Furthermore, the best-performing system was integrated into the radiological company's information systems as an API, operating in a real-world environment.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485118/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03131-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03131-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了基于 PI-RADS 标准的两种前列腺癌检查结果自动文本分类系统的实施情况。具体来说,该系统采用了使用 XGBoost 的传统机器学习模型和使用 RoBERTa 的基于语言模型的方法。研究的重点是西班牙语的核磁共振前列腺放射报告,这在以前还没有过探索。结果表明,RoBERTa 模型优于 XGBoost 模型,尽管两者都取得了可喜的成果。此外,表现最好的系统作为 API 集成到了放射公司的信息系统中,在真实环境中运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automatic text classification of prostate cancer malignancy scores in radiology reports using NLP models.

Automatic text classification of prostate cancer malignancy scores in radiology reports using NLP models.

This paper presents the implementation of two automated text classification systems for prostate cancer findings based on the PI-RADS criteria. Specifically, a traditional machine learning model using XGBoost and a language model-based approach using RoBERTa were employed. The study focused on Spanish-language radiological MRI prostate reports, which has not been explored before. The results demonstrate that the RoBERTa model outperforms the XGBoost model, although both achieve promising results. Furthermore, the best-performing system was integrated into the radiological company's information systems as an API, operating in a real-world environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信