{"title":"马鲁宾对雄性 Wistar 大鼠中 MPTP 诱导的实验性帕金森病的神经保护作用","authors":"Xiaofei Xu, Jingde Li, Mingjun Liu, Baoyan Zhang","doi":"10.1080/15376516.2024.2364191","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we have analyzed the neuroprotective activity of marrubiin against MPTP-induced Parkinson's disease (PD) in rat brains. MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) a neurotoxin was administered intraperitoneally (i.p.,) to rats and then treated using marrubiin. After marrubiin treatment, rats were trained, and tested for behavioral analyses like cognitive performance, open field test, rotarod test, grip strength test, beam walking test, the status of body weight, and striatal levels of neurotransmitters like dopamine, norepinephrine, serotonin, DOPAC, homovanillic acid, 5-hydroxy indole acetic acid, the status of oxidative stress markers like LPO, protein carbonyl content (PCC), Xanthine oxidase (XO), and status of antioxidant enzyme levels like SOD, CAT, GPX in the striatum and hippocampal tissues, status of neuroinflammatory markers like TNF-α, IL1β, IL-6, and status of histological architecture in brain striatum were also analyzed. All these parameters were significantly (<i>p</i> < 0.05) abnormal in MPTP-induced rats. Marrubiin (MB) treated shows significant (<i>p</i> < 0.05) near normal behavioral restoration in cognitive performance, open field, rotarod, grip strength, and beam walking tests. Furthermore, the status of body weight, and levels of neurotransmitters, were also significantly (<i>p</i> < 0.05) reversed to near normalcy in marrubiin-treated rats. Similarly, oxidative stress, antioxidant enzyme levels in the striatum and hippocampal tissues, TNF-α, IL1β, IL-6 levels, and histological architecture were noted to be restored to near normalcy in marrubiin-treated rats. Collectively, our preliminary results highlight the neuroprotective ability of marrubiin. However, the cellular and biochemical mechanisms of marrubiin's neuroprotective ability have to be studied in detail.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"908-919"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective effect of marrubiin against MPTP-induced experimental Parkinson's disease in male wistar rats.\",\"authors\":\"Xiaofei Xu, Jingde Li, Mingjun Liu, Baoyan Zhang\",\"doi\":\"10.1080/15376516.2024.2364191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we have analyzed the neuroprotective activity of marrubiin against MPTP-induced Parkinson's disease (PD) in rat brains. MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) a neurotoxin was administered intraperitoneally (i.p.,) to rats and then treated using marrubiin. After marrubiin treatment, rats were trained, and tested for behavioral analyses like cognitive performance, open field test, rotarod test, grip strength test, beam walking test, the status of body weight, and striatal levels of neurotransmitters like dopamine, norepinephrine, serotonin, DOPAC, homovanillic acid, 5-hydroxy indole acetic acid, the status of oxidative stress markers like LPO, protein carbonyl content (PCC), Xanthine oxidase (XO), and status of antioxidant enzyme levels like SOD, CAT, GPX in the striatum and hippocampal tissues, status of neuroinflammatory markers like TNF-α, IL1β, IL-6, and status of histological architecture in brain striatum were also analyzed. All these parameters were significantly (<i>p</i> < 0.05) abnormal in MPTP-induced rats. Marrubiin (MB) treated shows significant (<i>p</i> < 0.05) near normal behavioral restoration in cognitive performance, open field, rotarod, grip strength, and beam walking tests. Furthermore, the status of body weight, and levels of neurotransmitters, were also significantly (<i>p</i> < 0.05) reversed to near normalcy in marrubiin-treated rats. Similarly, oxidative stress, antioxidant enzyme levels in the striatum and hippocampal tissues, TNF-α, IL1β, IL-6 levels, and histological architecture were noted to be restored to near normalcy in marrubiin-treated rats. Collectively, our preliminary results highlight the neuroprotective ability of marrubiin. However, the cellular and biochemical mechanisms of marrubiin's neuroprotective ability have to be studied in detail.</p>\",\"PeriodicalId\":23177,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\" \",\"pages\":\"908-919\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2024.2364191\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2024.2364191","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Neuroprotective effect of marrubiin against MPTP-induced experimental Parkinson's disease in male wistar rats.
In this work, we have analyzed the neuroprotective activity of marrubiin against MPTP-induced Parkinson's disease (PD) in rat brains. MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) a neurotoxin was administered intraperitoneally (i.p.,) to rats and then treated using marrubiin. After marrubiin treatment, rats were trained, and tested for behavioral analyses like cognitive performance, open field test, rotarod test, grip strength test, beam walking test, the status of body weight, and striatal levels of neurotransmitters like dopamine, norepinephrine, serotonin, DOPAC, homovanillic acid, 5-hydroxy indole acetic acid, the status of oxidative stress markers like LPO, protein carbonyl content (PCC), Xanthine oxidase (XO), and status of antioxidant enzyme levels like SOD, CAT, GPX in the striatum and hippocampal tissues, status of neuroinflammatory markers like TNF-α, IL1β, IL-6, and status of histological architecture in brain striatum were also analyzed. All these parameters were significantly (p < 0.05) abnormal in MPTP-induced rats. Marrubiin (MB) treated shows significant (p < 0.05) near normal behavioral restoration in cognitive performance, open field, rotarod, grip strength, and beam walking tests. Furthermore, the status of body weight, and levels of neurotransmitters, were also significantly (p < 0.05) reversed to near normalcy in marrubiin-treated rats. Similarly, oxidative stress, antioxidant enzyme levels in the striatum and hippocampal tissues, TNF-α, IL1β, IL-6 levels, and histological architecture were noted to be restored to near normalcy in marrubiin-treated rats. Collectively, our preliminary results highlight the neuroprotective ability of marrubiin. However, the cellular and biochemical mechanisms of marrubiin's neuroprotective ability have to be studied in detail.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.