Gloria Hyunjung Kwak, Hera A Kamdar, Molly J Douglas, Hui Hu, Sophie E Ack, India A Lissak, Andrew E Williams, Nirupama Yechoor, Eric S Rosenthal
{"title":"健康的社会决定因素与神经重症监护中维持生命疗法的限制:CHoRUS 试点项目。","authors":"Gloria Hyunjung Kwak, Hera A Kamdar, Molly J Douglas, Hui Hu, Sophie E Ack, India A Lissak, Andrew E Williams, Nirupama Yechoor, Eric S Rosenthal","doi":"10.1007/s12028-024-02007-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Social determinants of health (SDOH) have been linked to neurocritical care outcomes. We sought to examine the extent to which SDOH explain differences in decisions regarding life-sustaining therapy, a key outcome determinant. We specifically investigated the association of a patient's home geography, individual-level SDOH, and neighborhood-level SDOH with subsequent early limitation of life-sustaining therapy (eLLST) and early withdrawal of life-sustaining therapy (eWLST), adjusting for admission severity.</p><p><strong>Methods: </strong>We developed unique methods within the Bridge to Artificial Intelligence for Clinical Care (Bridge2AI for Clinical Care) Collaborative Hospital Repository Uniting Standards for Equitable Artificial Intelligence (CHoRUS) program to extract individual-level SDOH from electronic health records and neighborhood-level SDOH from privacy-preserving geomapping. We piloted these methods to a 7 years retrospective cohort of consecutive neuroscience intensive care unit admissions (2016-2022) at two large academic medical centers within an eastern Massachusetts health care system, examining associations between home census tract and subsequent occurrence of eLLST and eWLST. We matched contextual neighborhood-level SDOH information to each census tract using public data sets, quantifying Social Vulnerability Index overall scores and subscores. We examined the association of individual-level SDOH and neighborhood-level SDOH with subsequent eLLST and eWLST through geographic, logistic, and machine learning models, adjusting for admission severity using admission Glasgow Coma Scale scores and disorders of consciousness grades.</p><p><strong>Results: </strong>Among 20,660 neuroscience intensive care unit admissions (18,780 unique patients), eLLST and eWLST varied geographically and were independently associated with individual-level SDOH and neighborhood-level SDOH across diagnoses. Individual-level SDOH factors (age, marital status, and race) were strongly associated with eLLST, predicting eLLST more strongly than admission severity. Individual-level SDOH were more strongly predictive of eLLST than neighborhood-level SDOH.</p><p><strong>Conclusions: </strong>Across diagnoses, eLLST varied by home geography and was predicted by individual-level SDOH and neighborhood-level SDOH more so than by admission severity. Structured shared decision-making tools may therefore represent tools for health equity. Additionally, these findings provide a major warning: prognostic and artificial intelligence models seeking to predict outcomes such as mortality or emergence from disorders of consciousness may be encoded with self-fulfilling biases of geography and demographics.</p>","PeriodicalId":19118,"journal":{"name":"Neurocritical Care","volume":" ","pages":"866-879"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Determinants of Health and Limitation of Life-Sustaining Therapy in Neurocritical Care: A CHoRUS Pilot Project.\",\"authors\":\"Gloria Hyunjung Kwak, Hera A Kamdar, Molly J Douglas, Hui Hu, Sophie E Ack, India A Lissak, Andrew E Williams, Nirupama Yechoor, Eric S Rosenthal\",\"doi\":\"10.1007/s12028-024-02007-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Social determinants of health (SDOH) have been linked to neurocritical care outcomes. We sought to examine the extent to which SDOH explain differences in decisions regarding life-sustaining therapy, a key outcome determinant. We specifically investigated the association of a patient's home geography, individual-level SDOH, and neighborhood-level SDOH with subsequent early limitation of life-sustaining therapy (eLLST) and early withdrawal of life-sustaining therapy (eWLST), adjusting for admission severity.</p><p><strong>Methods: </strong>We developed unique methods within the Bridge to Artificial Intelligence for Clinical Care (Bridge2AI for Clinical Care) Collaborative Hospital Repository Uniting Standards for Equitable Artificial Intelligence (CHoRUS) program to extract individual-level SDOH from electronic health records and neighborhood-level SDOH from privacy-preserving geomapping. We piloted these methods to a 7 years retrospective cohort of consecutive neuroscience intensive care unit admissions (2016-2022) at two large academic medical centers within an eastern Massachusetts health care system, examining associations between home census tract and subsequent occurrence of eLLST and eWLST. We matched contextual neighborhood-level SDOH information to each census tract using public data sets, quantifying Social Vulnerability Index overall scores and subscores. We examined the association of individual-level SDOH and neighborhood-level SDOH with subsequent eLLST and eWLST through geographic, logistic, and machine learning models, adjusting for admission severity using admission Glasgow Coma Scale scores and disorders of consciousness grades.</p><p><strong>Results: </strong>Among 20,660 neuroscience intensive care unit admissions (18,780 unique patients), eLLST and eWLST varied geographically and were independently associated with individual-level SDOH and neighborhood-level SDOH across diagnoses. Individual-level SDOH factors (age, marital status, and race) were strongly associated with eLLST, predicting eLLST more strongly than admission severity. Individual-level SDOH were more strongly predictive of eLLST than neighborhood-level SDOH.</p><p><strong>Conclusions: </strong>Across diagnoses, eLLST varied by home geography and was predicted by individual-level SDOH and neighborhood-level SDOH more so than by admission severity. Structured shared decision-making tools may therefore represent tools for health equity. Additionally, these findings provide a major warning: prognostic and artificial intelligence models seeking to predict outcomes such as mortality or emergence from disorders of consciousness may be encoded with self-fulfilling biases of geography and demographics.</p>\",\"PeriodicalId\":19118,\"journal\":{\"name\":\"Neurocritical Care\",\"volume\":\" \",\"pages\":\"866-879\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocritical Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12028-024-02007-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocritical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12028-024-02007-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Social Determinants of Health and Limitation of Life-Sustaining Therapy in Neurocritical Care: A CHoRUS Pilot Project.
Background: Social determinants of health (SDOH) have been linked to neurocritical care outcomes. We sought to examine the extent to which SDOH explain differences in decisions regarding life-sustaining therapy, a key outcome determinant. We specifically investigated the association of a patient's home geography, individual-level SDOH, and neighborhood-level SDOH with subsequent early limitation of life-sustaining therapy (eLLST) and early withdrawal of life-sustaining therapy (eWLST), adjusting for admission severity.
Methods: We developed unique methods within the Bridge to Artificial Intelligence for Clinical Care (Bridge2AI for Clinical Care) Collaborative Hospital Repository Uniting Standards for Equitable Artificial Intelligence (CHoRUS) program to extract individual-level SDOH from electronic health records and neighborhood-level SDOH from privacy-preserving geomapping. We piloted these methods to a 7 years retrospective cohort of consecutive neuroscience intensive care unit admissions (2016-2022) at two large academic medical centers within an eastern Massachusetts health care system, examining associations between home census tract and subsequent occurrence of eLLST and eWLST. We matched contextual neighborhood-level SDOH information to each census tract using public data sets, quantifying Social Vulnerability Index overall scores and subscores. We examined the association of individual-level SDOH and neighborhood-level SDOH with subsequent eLLST and eWLST through geographic, logistic, and machine learning models, adjusting for admission severity using admission Glasgow Coma Scale scores and disorders of consciousness grades.
Results: Among 20,660 neuroscience intensive care unit admissions (18,780 unique patients), eLLST and eWLST varied geographically and were independently associated with individual-level SDOH and neighborhood-level SDOH across diagnoses. Individual-level SDOH factors (age, marital status, and race) were strongly associated with eLLST, predicting eLLST more strongly than admission severity. Individual-level SDOH were more strongly predictive of eLLST than neighborhood-level SDOH.
Conclusions: Across diagnoses, eLLST varied by home geography and was predicted by individual-level SDOH and neighborhood-level SDOH more so than by admission severity. Structured shared decision-making tools may therefore represent tools for health equity. Additionally, these findings provide a major warning: prognostic and artificial intelligence models seeking to predict outcomes such as mortality or emergence from disorders of consciousness may be encoded with self-fulfilling biases of geography and demographics.
期刊介绍:
Neurocritical Care is a peer reviewed scientific publication whose major goal is to disseminate new knowledge on all aspects of acute neurological care. It is directed towards neurosurgeons, neuro-intensivists, neurologists, anesthesiologists, emergency physicians, and critical care nurses treating patients with urgent neurologic disorders. These are conditions that may potentially evolve rapidly and could need immediate medical or surgical intervention. Neurocritical Care provides a comprehensive overview of current developments in intensive care neurology, neurosurgery and neuroanesthesia and includes information about new therapeutic avenues and technological innovations. Neurocritical Care is the official journal of the Neurocritical Care Society.