Jason A. Witek, Mami Horikawa, Bradford D. Henderson, Allen F. Brooks, Peter J. H. Scott, Xia Shao
{"title":"改进[11C]2-(2,6-二氟-4-((2-(N-甲基苯基磺酰胺基)乙基)硫)苯氧基)乙酰胺([11C]K2)的放射合成和自动化,用于谷氨酸α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体的正电子发射断层成像。","authors":"Jason A. Witek, Mami Horikawa, Bradford D. Henderson, Allen F. Brooks, Peter J. H. Scott, Xia Shao","doi":"10.1002/jlcr.4113","DOIUrl":null,"url":null,"abstract":"<p>A new automated radiosynthesis of [<sup>11</sup>C]2-(2,6-difluoro-4-((2-(<i>N</i>-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([<sup>11</sup>C]K2), a radiopharmaceutical for the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, is reported. Although manual syntheses have been described, these are unsuitable for routine production of larger batches of [<sup>11</sup>C]K2 for (pre)clinical PET imaging applications. To meet demands for the imaging agent from our functional neuroimaging collaborators, herein, we report a current good manufacturing practice (cGMP)-compliant synthesis of [<sup>11</sup>C]K2 using a commercial synthesis module. The new synthesis is fully automated and has been validated for clinical use. The total synthesis time is 33 min from end of bombardment, and the production method provides 2.66 ± 0.3 GBq (71.9 ± 8.6 mCi) of [<sup>11</sup>C]K2 in 97.7 ± 0.5% radiochemical purity and 754.1 ± 231.5 TBq/mmol (20,382.7 ± 6256.1 Ci/mmol) molar activity (<i>n</i> = 3). Batches passed all requisite quality control testing confirming suitability for clinical use.</p>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"67 9","pages":"324-329"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improved Radiosynthesis and Automation of [11C]2-(2,6-Difluoro-4-((2-(N-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([11C]K2) for Positron Emission Tomography of the Glutamate α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid (AMPA) Receptor\",\"authors\":\"Jason A. Witek, Mami Horikawa, Bradford D. Henderson, Allen F. Brooks, Peter J. H. Scott, Xia Shao\",\"doi\":\"10.1002/jlcr.4113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new automated radiosynthesis of [<sup>11</sup>C]2-(2,6-difluoro-4-((2-(<i>N</i>-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([<sup>11</sup>C]K2), a radiopharmaceutical for the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, is reported. Although manual syntheses have been described, these are unsuitable for routine production of larger batches of [<sup>11</sup>C]K2 for (pre)clinical PET imaging applications. To meet demands for the imaging agent from our functional neuroimaging collaborators, herein, we report a current good manufacturing practice (cGMP)-compliant synthesis of [<sup>11</sup>C]K2 using a commercial synthesis module. The new synthesis is fully automated and has been validated for clinical use. The total synthesis time is 33 min from end of bombardment, and the production method provides 2.66 ± 0.3 GBq (71.9 ± 8.6 mCi) of [<sup>11</sup>C]K2 in 97.7 ± 0.5% radiochemical purity and 754.1 ± 231.5 TBq/mmol (20,382.7 ± 6256.1 Ci/mmol) molar activity (<i>n</i> = 3). Batches passed all requisite quality control testing confirming suitability for clinical use.</p>\",\"PeriodicalId\":16288,\"journal\":{\"name\":\"Journal of labelled compounds & radiopharmaceuticals\",\"volume\":\"67 9\",\"pages\":\"324-329\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of labelled compounds & radiopharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4113\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Improved Radiosynthesis and Automation of [11C]2-(2,6-Difluoro-4-((2-(N-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([11C]K2) for Positron Emission Tomography of the Glutamate α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid (AMPA) Receptor
A new automated radiosynthesis of [11C]2-(2,6-difluoro-4-((2-(N-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([11C]K2), a radiopharmaceutical for the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, is reported. Although manual syntheses have been described, these are unsuitable for routine production of larger batches of [11C]K2 for (pre)clinical PET imaging applications. To meet demands for the imaging agent from our functional neuroimaging collaborators, herein, we report a current good manufacturing practice (cGMP)-compliant synthesis of [11C]K2 using a commercial synthesis module. The new synthesis is fully automated and has been validated for clinical use. The total synthesis time is 33 min from end of bombardment, and the production method provides 2.66 ± 0.3 GBq (71.9 ± 8.6 mCi) of [11C]K2 in 97.7 ± 0.5% radiochemical purity and 754.1 ± 231.5 TBq/mmol (20,382.7 ± 6256.1 Ci/mmol) molar activity (n = 3). Batches passed all requisite quality control testing confirming suitability for clinical use.
期刊介绍:
The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo.
The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.