Lauri J Sipilä, Mervi Aavikko, Janne Ravantti, Samantha Martin, Teijo Kuopio, Laura Lahtinen, FinnGen, Päivi Peltomäki, Jukka-Pekka Mecklin, Lauri A Aaltonen, Toni T Seppälä
{"title":"在大规模基因分型队列中发现主要林奇综合征致病基因 MLH1 基因变异。","authors":"Lauri J Sipilä, Mervi Aavikko, Janne Ravantti, Samantha Martin, Teijo Kuopio, Laura Lahtinen, FinnGen, Päivi Peltomäki, Jukka-Pekka Mecklin, Lauri A Aaltonen, Toni T Seppälä","doi":"10.1007/s10689-024-00400-4","DOIUrl":null,"url":null,"abstract":"<p><p>Some 50% of Finnish Lynch Syndrome (LS) cases are caused by a founder variant in MLH1, in which the entire exon 16 has been lost due to an Alu-mediated recombination event. We piloted detecting the variant in FinnGen, a large genotyped cohort comprising approximately 10% of the current Finnish population, and validated the MLH1 founder variant status of identified individuals residing in the Central Finland Biobank catchment area. A consensus sequence flanking the deletion was identified in whole genome sequences of six LS individuals with the founder variant. Genotype data of 212,196 individuals was queried for regional matches to the consensus sequence. Enrichment of cancer and age at cancer onset was compared between matching and non-matching individuals. Variant status was validated for a subset of the identified individuals using a polymerase chain reaction assay. Allelic matches in a chosen target region was detected in 348 individuals, with 89 having a cancer diagnosis (Bonferroni-adjusted p-value = 1), 20 a familial cancer history (p-adj. < .001), with mean age of onset of cancer being 53.6 years (p-adj. = .002). Eighteen of potential variant carriers had been sampled by the Central Finland Biobank, of which four (22%) were validated as true variant carriers. The workflow we have employed identifies MLH1 exon 16 deletion variant carriers from population-wide SNP genotyping data. An alternative design will be sought to limit false positive findings. Large genotyped cohorts provide a potential resource for identification and prevention of hereditary cancer.</p>","PeriodicalId":12336,"journal":{"name":"Familial Cancer","volume":" ","pages":"647-652"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512911/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detection of a major Lynch Syndrome-causing MLH1 founder variant in a large-scale genotyped cohort.\",\"authors\":\"Lauri J Sipilä, Mervi Aavikko, Janne Ravantti, Samantha Martin, Teijo Kuopio, Laura Lahtinen, FinnGen, Päivi Peltomäki, Jukka-Pekka Mecklin, Lauri A Aaltonen, Toni T Seppälä\",\"doi\":\"10.1007/s10689-024-00400-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Some 50% of Finnish Lynch Syndrome (LS) cases are caused by a founder variant in MLH1, in which the entire exon 16 has been lost due to an Alu-mediated recombination event. We piloted detecting the variant in FinnGen, a large genotyped cohort comprising approximately 10% of the current Finnish population, and validated the MLH1 founder variant status of identified individuals residing in the Central Finland Biobank catchment area. A consensus sequence flanking the deletion was identified in whole genome sequences of six LS individuals with the founder variant. Genotype data of 212,196 individuals was queried for regional matches to the consensus sequence. Enrichment of cancer and age at cancer onset was compared between matching and non-matching individuals. Variant status was validated for a subset of the identified individuals using a polymerase chain reaction assay. Allelic matches in a chosen target region was detected in 348 individuals, with 89 having a cancer diagnosis (Bonferroni-adjusted p-value = 1), 20 a familial cancer history (p-adj. < .001), with mean age of onset of cancer being 53.6 years (p-adj. = .002). Eighteen of potential variant carriers had been sampled by the Central Finland Biobank, of which four (22%) were validated as true variant carriers. The workflow we have employed identifies MLH1 exon 16 deletion variant carriers from population-wide SNP genotyping data. An alternative design will be sought to limit false positive findings. Large genotyped cohorts provide a potential resource for identification and prevention of hereditary cancer.</p>\",\"PeriodicalId\":12336,\"journal\":{\"name\":\"Familial Cancer\",\"volume\":\" \",\"pages\":\"647-652\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512911/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Familial Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10689-024-00400-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Familial Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10689-024-00400-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Detection of a major Lynch Syndrome-causing MLH1 founder variant in a large-scale genotyped cohort.
Some 50% of Finnish Lynch Syndrome (LS) cases are caused by a founder variant in MLH1, in which the entire exon 16 has been lost due to an Alu-mediated recombination event. We piloted detecting the variant in FinnGen, a large genotyped cohort comprising approximately 10% of the current Finnish population, and validated the MLH1 founder variant status of identified individuals residing in the Central Finland Biobank catchment area. A consensus sequence flanking the deletion was identified in whole genome sequences of six LS individuals with the founder variant. Genotype data of 212,196 individuals was queried for regional matches to the consensus sequence. Enrichment of cancer and age at cancer onset was compared between matching and non-matching individuals. Variant status was validated for a subset of the identified individuals using a polymerase chain reaction assay. Allelic matches in a chosen target region was detected in 348 individuals, with 89 having a cancer diagnosis (Bonferroni-adjusted p-value = 1), 20 a familial cancer history (p-adj. < .001), with mean age of onset of cancer being 53.6 years (p-adj. = .002). Eighteen of potential variant carriers had been sampled by the Central Finland Biobank, of which four (22%) were validated as true variant carriers. The workflow we have employed identifies MLH1 exon 16 deletion variant carriers from population-wide SNP genotyping data. An alternative design will be sought to limit false positive findings. Large genotyped cohorts provide a potential resource for identification and prevention of hereditary cancer.
期刊介绍:
In recent years clinical cancer genetics has become increasingly important. Several events, in particular the developments in DNA-based technology, have contributed to this evolution. Clinical cancer genetics has now matured to a medical discipline which is truly multidisciplinary in which clinical and molecular geneticists work together with clinical and medical oncologists as well as with psycho-social workers.
Due to the multidisciplinary nature of clinical cancer genetics most papers are currently being published in a wide variety of journals on epidemiology, oncology and genetics. Familial Cancer provides a forum bringing these topics together focusing on the interests and needs of the clinician.
The journal mainly concentrates on clinical cancer genetics. Most major areas in the field shall be included, such as epidemiology of familial cancer, molecular analysis and diagnosis, clinical expression, treatment and prevention, counselling and the health economics of familial cancer.