通过具有同质性和稀疏性的量子回归进行稳健的综合分析

Pub Date : 2024-06-01 DOI:10.1016/j.jspi.2024.106196
Hao Zeng , Chuang Wan , Wei Zhong , Tuo Liu
{"title":"通过具有同质性和稀疏性的量子回归进行稳健的综合分析","authors":"Hao Zeng ,&nbsp;Chuang Wan ,&nbsp;Wei Zhong ,&nbsp;Tuo Liu","doi":"10.1016/j.jspi.2024.106196","DOIUrl":null,"url":null,"abstract":"<div><p>Integrative analysis plays a critical role in integrating heterogeneous data from multiple datasets to provide a comprehensive view of the overall data features. However, in multiple datasets, outliers and heavy-tailed data can render least squares estimation unreliable. In response, we propose a Robust Integrative Analysis via Quantile Regression (RIAQ) that accounts for homogeneity and sparsity in multiple datasets. The RIAQ approach is not only able to identify latent homogeneous coefficient structures but also recover the sparsity of high-dimensional covariates via double penalty terms. The integration of sample information across multiple datasets improves estimation efficiency, while a sparse model improves model interpretability. Furthermore, quantile regression allows the detection of subgroup structures under different quantile levels, providing a comprehensive picture of the relationship between response and high-dimensional covariates. We develop an efficient alternating direction method of multipliers (ADMM) algorithm to solve the optimization problem and study its convergence. We also derive the parameter selection consistency of the modified Bayesian information criterion. Numerical studies demonstrate that our proposed estimator has satisfactory finite-sample performance, especially in heavy-tailed cases.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Integrative Analysis via Quantile Regression with Homogeneity and Sparsity\",\"authors\":\"Hao Zeng ,&nbsp;Chuang Wan ,&nbsp;Wei Zhong ,&nbsp;Tuo Liu\",\"doi\":\"10.1016/j.jspi.2024.106196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integrative analysis plays a critical role in integrating heterogeneous data from multiple datasets to provide a comprehensive view of the overall data features. However, in multiple datasets, outliers and heavy-tailed data can render least squares estimation unreliable. In response, we propose a Robust Integrative Analysis via Quantile Regression (RIAQ) that accounts for homogeneity and sparsity in multiple datasets. The RIAQ approach is not only able to identify latent homogeneous coefficient structures but also recover the sparsity of high-dimensional covariates via double penalty terms. The integration of sample information across multiple datasets improves estimation efficiency, while a sparse model improves model interpretability. Furthermore, quantile regression allows the detection of subgroup structures under different quantile levels, providing a comprehensive picture of the relationship between response and high-dimensional covariates. We develop an efficient alternating direction method of multipliers (ADMM) algorithm to solve the optimization problem and study its convergence. We also derive the parameter selection consistency of the modified Bayesian information criterion. Numerical studies demonstrate that our proposed estimator has satisfactory finite-sample performance, especially in heavy-tailed cases.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

整合分析在整合来自多个数据集的异构数据以提供整体数据特征的全面视图方面发挥着至关重要的作用。然而,在多个数据集中,异常值和重尾数据会使最小二乘法估计变得不可靠。为此,我们提出了一种考虑到多个数据集的同质性和稀疏性的 "稳健的定量回归综合分析法"(RIAQ)。RIAQ 方法不仅能识别潜在的同质系数结构,还能通过双重惩罚项恢复高维协变量的稀疏性。整合多个数据集的样本信息提高了估计效率,而稀疏模型则提高了模型的可解释性。此外,量子回归还可以检测不同量子水平下的亚组结构,从而全面反映响应与高维协变量之间的关系。我们开发了一种高效的交替乘法(ADMM)算法来解决优化问题,并对其收敛性进行了研究。我们还推导了修正贝叶斯信息准则的参数选择一致性。数值研究表明,我们提出的估计器具有令人满意的有限样本性能,尤其是在重尾情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Robust Integrative Analysis via Quantile Regression with Homogeneity and Sparsity

Integrative analysis plays a critical role in integrating heterogeneous data from multiple datasets to provide a comprehensive view of the overall data features. However, in multiple datasets, outliers and heavy-tailed data can render least squares estimation unreliable. In response, we propose a Robust Integrative Analysis via Quantile Regression (RIAQ) that accounts for homogeneity and sparsity in multiple datasets. The RIAQ approach is not only able to identify latent homogeneous coefficient structures but also recover the sparsity of high-dimensional covariates via double penalty terms. The integration of sample information across multiple datasets improves estimation efficiency, while a sparse model improves model interpretability. Furthermore, quantile regression allows the detection of subgroup structures under different quantile levels, providing a comprehensive picture of the relationship between response and high-dimensional covariates. We develop an efficient alternating direction method of multipliers (ADMM) algorithm to solve the optimization problem and study its convergence. We also derive the parameter selection consistency of the modified Bayesian information criterion. Numerical studies demonstrate that our proposed estimator has satisfactory finite-sample performance, especially in heavy-tailed cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信