基于 HDL 编码器方法,高效实时部署用于目标检测的优化 YOLOv2 深度倾斜模型的 Zynq 7000 FPGA

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
J. Slimane
{"title":"基于 HDL 编码器方法,高效实时部署用于目标检测的优化 YOLOv2 深度倾斜模型的 Zynq 7000 FPGA","authors":"J. Slimane","doi":"10.59035/zbte3810","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Arrays (FPGAs) have garnered significant attention in the development and enhancement of target identification algorithms that employ YOLOv2 models and FPGAs, owing to their adaptability and user-friendliness. The Simulink HDL compiler was utilized to design, simulate, and implement our proposed design. In an effort to rectify this, this paper presents a comprehensive programming and design proposal. The implementation of the YOLOv2 algorithm for real-time vehicle detection on the Xilinx® Zynq-7000 System-on-a-chip is proposed in this work. Real-time testing of the synthesised hardware revealed that it can process Full HD video at a rate of 16 frames per second. On the Xilinx Zynq-7000 SOC, the estimated dynamic power consumption is less than 90 mW. When comparing the results of the proposed work to those of other simulations, it is observed that resource utilization is enhanced by around 204 k (75%) LUT, 305 (12%) DSP, and 224 k (41%) flip-flops at 200 MHz.","PeriodicalId":42317,"journal":{"name":"International Journal on Information Technologies and Security","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Real time Zynq 7000 FPGA deployment of optimized YOLOv2 deep leaning model for target detection, based on HDL Coder Methodology\",\"authors\":\"J. Slimane\",\"doi\":\"10.59035/zbte3810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field Programmable Gate Arrays (FPGAs) have garnered significant attention in the development and enhancement of target identification algorithms that employ YOLOv2 models and FPGAs, owing to their adaptability and user-friendliness. The Simulink HDL compiler was utilized to design, simulate, and implement our proposed design. In an effort to rectify this, this paper presents a comprehensive programming and design proposal. The implementation of the YOLOv2 algorithm for real-time vehicle detection on the Xilinx® Zynq-7000 System-on-a-chip is proposed in this work. Real-time testing of the synthesised hardware revealed that it can process Full HD video at a rate of 16 frames per second. On the Xilinx Zynq-7000 SOC, the estimated dynamic power consumption is less than 90 mW. When comparing the results of the proposed work to those of other simulations, it is observed that resource utilization is enhanced by around 204 k (75%) LUT, 305 (12%) DSP, and 224 k (41%) flip-flops at 200 MHz.\",\"PeriodicalId\":42317,\"journal\":{\"name\":\"International Journal on Information Technologies and Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Information Technologies and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59035/zbte3810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information Technologies and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59035/zbte3810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现场可编程门阵列(FPGA)因其适应性和用户友好性,在开发和改进采用 YOLOv2 模型和 FPGA 的目标识别算法方面备受关注。我们利用 Simulink HDL 编译器来设计、模拟和实现我们提出的设计。为了纠正这种情况,本文提出了一个全面的编程和设计建议。本文提出在 Xilinx® Zynq-7000 片上系统上实现用于实时车辆检测的 YOLOv2 算法。对合成硬件的实时测试表明,它能以每秒 16 帧的速率处理全高清视频。在赛灵思 Zynq-7000 片上,估计动态功耗低于 90 mW。将拟议工作的结果与其他模拟结果进行比较后发现,在 200 MHz 频率下,资源利用率提高了约 204 k(75%)LUT、305(12%)DSP 和 224 k(41%)触发器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Real time Zynq 7000 FPGA deployment of optimized YOLOv2 deep leaning model for target detection, based on HDL Coder Methodology
Field Programmable Gate Arrays (FPGAs) have garnered significant attention in the development and enhancement of target identification algorithms that employ YOLOv2 models and FPGAs, owing to their adaptability and user-friendliness. The Simulink HDL compiler was utilized to design, simulate, and implement our proposed design. In an effort to rectify this, this paper presents a comprehensive programming and design proposal. The implementation of the YOLOv2 algorithm for real-time vehicle detection on the Xilinx® Zynq-7000 System-on-a-chip is proposed in this work. Real-time testing of the synthesised hardware revealed that it can process Full HD video at a rate of 16 frames per second. On the Xilinx Zynq-7000 SOC, the estimated dynamic power consumption is less than 90 mW. When comparing the results of the proposed work to those of other simulations, it is observed that resource utilization is enhanced by around 204 k (75%) LUT, 305 (12%) DSP, and 224 k (41%) flip-flops at 200 MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信