{"title":"球形数据核密度估计的偏差修正","authors":"Yasuhito Tsuruta","doi":"10.1016/j.jmva.2024.105338","DOIUrl":null,"url":null,"abstract":"<div><p>Kernel density estimations with spherical data can flexibly estimate the shape of an underlying density, including rotationally symmetric, skewed, and multimodal distributions. Standard estimators are generally based on rotationally symmetric kernel functions such as the von Mises kernel function. Unfortunately, their mean integrated squared error does not have root-<span><math><mi>n</mi></math></span> consistency and increasing the dimension slows its convergence rate. Therefore, this study aims to improve its accuracy by correcting this bias. It proposes bias correction methods by applying the generalized jackknifing method that can be generated from the von Mises kernel function. We also obtain the asymptotic mean integrated squared errors of the proposed estimators. We find that the convergence rates of the proposed estimators are higher than those of previous estimators. Further, a numerical experiment shows that the proposed estimators perform better than the von Mises kernel density estimators in finite samples in scenarios that are mixtures of von Mises densities.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias correction for kernel density estimation with spherical data\",\"authors\":\"Yasuhito Tsuruta\",\"doi\":\"10.1016/j.jmva.2024.105338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kernel density estimations with spherical data can flexibly estimate the shape of an underlying density, including rotationally symmetric, skewed, and multimodal distributions. Standard estimators are generally based on rotationally symmetric kernel functions such as the von Mises kernel function. Unfortunately, their mean integrated squared error does not have root-<span><math><mi>n</mi></math></span> consistency and increasing the dimension slows its convergence rate. Therefore, this study aims to improve its accuracy by correcting this bias. It proposes bias correction methods by applying the generalized jackknifing method that can be generated from the von Mises kernel function. We also obtain the asymptotic mean integrated squared errors of the proposed estimators. We find that the convergence rates of the proposed estimators are higher than those of previous estimators. Further, a numerical experiment shows that the proposed estimators perform better than the von Mises kernel density estimators in finite samples in scenarios that are mixtures of von Mises densities.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000459\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000459","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
球形数据的核密度估计可以灵活地估计基础密度的形状,包括旋转对称、倾斜和多模态分布。标准估计器一般基于旋转对称核函数,如 von Mises 核函数。遗憾的是,它们的平均综合平方误差不具有根 n 一致性,而且维度的增加会减慢其收敛速度。因此,本研究旨在通过纠正这一偏差来提高其精度。本研究通过应用可由 von Mises 核函数生成的广义千斤顶分度法,提出了偏差修正方法。我们还获得了所提估计器的渐近平均积分平方误差。我们发现,所提出的估计器的收敛率高于之前的估计器。此外,数值实验表明,在有限样本中,在 von Mises 密度混合的情况下,所提出的估计器比 von Mises 核密度估计器的性能更好。
Bias correction for kernel density estimation with spherical data
Kernel density estimations with spherical data can flexibly estimate the shape of an underlying density, including rotationally symmetric, skewed, and multimodal distributions. Standard estimators are generally based on rotationally symmetric kernel functions such as the von Mises kernel function. Unfortunately, their mean integrated squared error does not have root- consistency and increasing the dimension slows its convergence rate. Therefore, this study aims to improve its accuracy by correcting this bias. It proposes bias correction methods by applying the generalized jackknifing method that can be generated from the von Mises kernel function. We also obtain the asymptotic mean integrated squared errors of the proposed estimators. We find that the convergence rates of the proposed estimators are higher than those of previous estimators. Further, a numerical experiment shows that the proposed estimators perform better than the von Mises kernel density estimators in finite samples in scenarios that are mixtures of von Mises densities.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.