具有高斯分布混合物形式分布的静态序列的模拟算法

Pub Date : 2024-06-01 DOI:10.1515/rnam-2024-0012
M. S. Akenteva, N. A. Kargapolova, V. A. Ogorodnikov
{"title":"具有高斯分布混合物形式分布的静态序列的模拟算法","authors":"M. S. Akenteva, N. A. Kargapolova, V. A. Ogorodnikov","doi":"10.1515/rnam-2024-0012","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present three algorithms for simulation of intervals of stationary vector and scalar sequences with partial distributions of their subsequences of fixed length in the form of a mixture of Gaussian distributions. The first algorithm is based on superposition of two Gaussian vector processes and the second and third ones use the method of conditional distributions and the method of superpositions to simulate the mixtures and to select realizations for approximate construction of conditional realizations. Some properties of these algorithms are presented.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation algorithms for stationary sequences with distributions in the form of a mixture of Gaussian distributions\",\"authors\":\"M. S. Akenteva, N. A. Kargapolova, V. A. Ogorodnikov\",\"doi\":\"10.1515/rnam-2024-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we present three algorithms for simulation of intervals of stationary vector and scalar sequences with partial distributions of their subsequences of fixed length in the form of a mixture of Gaussian distributions. The first algorithm is based on superposition of two Gaussian vector processes and the second and third ones use the method of conditional distributions and the method of superpositions to simulate the mixtures and to select realizations for approximate construction of conditional realizations. Some properties of these algorithms are presented.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2024-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2024-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了三种算法,用于模拟静止向量和标量序列的区间,其子序列的部分分布以高斯分布混合物的形式固定长度。第一种算法基于两个高斯矢量过程的叠加,第二和第三种算法使用条件分布方法和叠加方法来模拟混合物,并为近似构建条件变现选择变现。本文介绍了这些算法的一些特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Simulation algorithms for stationary sequences with distributions in the form of a mixture of Gaussian distributions
In this paper, we present three algorithms for simulation of intervals of stationary vector and scalar sequences with partial distributions of their subsequences of fixed length in the form of a mixture of Gaussian distributions. The first algorithm is based on superposition of two Gaussian vector processes and the second and third ones use the method of conditional distributions and the method of superpositions to simulate the mixtures and to select realizations for approximate construction of conditional realizations. Some properties of these algorithms are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信