Alfonso Cabezón , Fabián Suárez-Lestón , Juan R. Granja , Ángel Piñeiro , Rebeca Garcia-Fandino
{"title":"CYCLOPEp 生成器:通过用户友好型网络平台促进环肽和纳米管研究","authors":"Alfonso Cabezón , Fabián Suárez-Lestón , Juan R. Granja , Ángel Piñeiro , Rebeca Garcia-Fandino","doi":"10.1016/j.csbj.2024.05.044","DOIUrl":null,"url":null,"abstract":"<div><p>The study of cyclic peptides (CPs) and self-assembling cyclic peptide nanotubes (SCPNs) is pivotal in advancing applications in diverse fields such as biomedicine, nanoelectronics, and catalysis. Recognizing the limitations in the experimental study of these molecules, this article introduces CYCLOPEp Builder, a comprehensive web-based application designed to facilitate the design, simulation, and visualization of CPs and SCPNs. The tool is engineered to generate molecular topologies, essential for conducting Molecular Dynamics simulations that span All-Atom to Coarse-Grain resolutions. CYCLOPEp Builder's user-friendly interface simplifies the complex process of molecular modeling, providing researchers with the ability to readily construct CPs and SCPNs. The platform is versatile, equipped with various force fields, and capable of producing structures ranging from individual CPs to complex SCPNs with different sequences, offering parallel and antiparallel orientations among them. By enhancing the capacity for detailed visualization of molecular assemblies, CYCLOPEp Builder improves the understanding of CP and SCPN molecular interactions. This tool is a step forward in democratizing access to sophisticated simulations, offering an invaluable resource to the scientific community engaged in the exploration of supramolecular structures. CYCLOPEp is accessible at <span>http://cyclopep.com/</span><svg><path></path></svg></p></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2001037024001892/pdfft?md5=e402d6fd21dd2d604ec1bb1695841fa1&pid=1-s2.0-S2001037024001892-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CYCLOPEp Builder: Facilitating cyclic peptide and nanotube research through a user-friendly web platform\",\"authors\":\"Alfonso Cabezón , Fabián Suárez-Lestón , Juan R. Granja , Ángel Piñeiro , Rebeca Garcia-Fandino\",\"doi\":\"10.1016/j.csbj.2024.05.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of cyclic peptides (CPs) and self-assembling cyclic peptide nanotubes (SCPNs) is pivotal in advancing applications in diverse fields such as biomedicine, nanoelectronics, and catalysis. Recognizing the limitations in the experimental study of these molecules, this article introduces CYCLOPEp Builder, a comprehensive web-based application designed to facilitate the design, simulation, and visualization of CPs and SCPNs. The tool is engineered to generate molecular topologies, essential for conducting Molecular Dynamics simulations that span All-Atom to Coarse-Grain resolutions. CYCLOPEp Builder's user-friendly interface simplifies the complex process of molecular modeling, providing researchers with the ability to readily construct CPs and SCPNs. The platform is versatile, equipped with various force fields, and capable of producing structures ranging from individual CPs to complex SCPNs with different sequences, offering parallel and antiparallel orientations among them. By enhancing the capacity for detailed visualization of molecular assemblies, CYCLOPEp Builder improves the understanding of CP and SCPN molecular interactions. This tool is a step forward in democratizing access to sophisticated simulations, offering an invaluable resource to the scientific community engaged in the exploration of supramolecular structures. CYCLOPEp is accessible at <span>http://cyclopep.com/</span><svg><path></path></svg></p></div>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2001037024001892/pdfft?md5=e402d6fd21dd2d604ec1bb1695841fa1&pid=1-s2.0-S2001037024001892-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2001037024001892\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024001892","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CYCLOPEp Builder: Facilitating cyclic peptide and nanotube research through a user-friendly web platform
The study of cyclic peptides (CPs) and self-assembling cyclic peptide nanotubes (SCPNs) is pivotal in advancing applications in diverse fields such as biomedicine, nanoelectronics, and catalysis. Recognizing the limitations in the experimental study of these molecules, this article introduces CYCLOPEp Builder, a comprehensive web-based application designed to facilitate the design, simulation, and visualization of CPs and SCPNs. The tool is engineered to generate molecular topologies, essential for conducting Molecular Dynamics simulations that span All-Atom to Coarse-Grain resolutions. CYCLOPEp Builder's user-friendly interface simplifies the complex process of molecular modeling, providing researchers with the ability to readily construct CPs and SCPNs. The platform is versatile, equipped with various force fields, and capable of producing structures ranging from individual CPs to complex SCPNs with different sequences, offering parallel and antiparallel orientations among them. By enhancing the capacity for detailed visualization of molecular assemblies, CYCLOPEp Builder improves the understanding of CP and SCPN molecular interactions. This tool is a step forward in democratizing access to sophisticated simulations, offering an invaluable resource to the scientific community engaged in the exploration of supramolecular structures. CYCLOPEp is accessible at http://cyclopep.com/
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology