自动生成多代理路径查找基准图的质量多样性方法(扩展摘要)

Cheng Qian, Yulun Zhang, Jiaoyang Li
{"title":"自动生成多代理路径查找基准图的质量多样性方法(扩展摘要)","authors":"Cheng Qian, Yulun Zhang, Jiaoyang Li","doi":"10.1609/socs.v17i1.31580","DOIUrl":null,"url":null,"abstract":"Multi-Agent Path Finding (MAPF) is a complex problem aiming at searching for paths where teams of agents navigate to their goal locations without collisions. Recent advancements in MAPF have highlighted the necessity for robust benchmarks to evaluate their performance. Previously, the benchmarks used to evaluate MAPF algorithms are predominantly fixed, human-designed maps, which cannot evaluate the behavior of the algorithms comprehensively, leading to potential failures in diverse map scenarios. Meanwhile, quality diversity (QD) algorithm is used to generate maps of high solution quality for MAPF. We employ this technique to automatically generate diverse benchmark maps and explore the detailed behavior of MAPF algorithms in the generated maps. As a preliminary result, we concentrate on EECBS, a popular sub-optimal MAPF algorithm, and observe several findings regarding the runtime and solution quality of EECBS, and difficulty of the generated maps.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"24 6","pages":"279-280"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quality Diversity Approach to Automatically Generate Multi-Agent Path Finding Benchmark Maps (Extended Abstract)\",\"authors\":\"Cheng Qian, Yulun Zhang, Jiaoyang Li\",\"doi\":\"10.1609/socs.v17i1.31580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Agent Path Finding (MAPF) is a complex problem aiming at searching for paths where teams of agents navigate to their goal locations without collisions. Recent advancements in MAPF have highlighted the necessity for robust benchmarks to evaluate their performance. Previously, the benchmarks used to evaluate MAPF algorithms are predominantly fixed, human-designed maps, which cannot evaluate the behavior of the algorithms comprehensively, leading to potential failures in diverse map scenarios. Meanwhile, quality diversity (QD) algorithm is used to generate maps of high solution quality for MAPF. We employ this technique to automatically generate diverse benchmark maps and explore the detailed behavior of MAPF algorithms in the generated maps. As a preliminary result, we concentrate on EECBS, a popular sub-optimal MAPF algorithm, and observe several findings regarding the runtime and solution quality of EECBS, and difficulty of the generated maps.\",\"PeriodicalId\":425645,\"journal\":{\"name\":\"Symposium on Combinatorial Search\",\"volume\":\"24 6\",\"pages\":\"279-280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Combinatorial Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/socs.v17i1.31580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v17i1.31580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多代理路径搜索(MAPF)是一个复杂的问题,其目的是搜索代理团队在不发生碰撞的情况下导航到目标位置的路径。MAPF 的最新进展突出表明,有必要制定稳健的基准来评估其性能。以前,用于评估 MAPF 算法的基准主要是固定的、人为设计的地图,无法全面评估算法的行为,导致算法在不同的地图场景中可能失效。与此同时,质量多样性(QD)算法可用于为 MAPF 生成高求解质量的地图。我们利用该技术自动生成多样化的基准地图,并在生成的地图中探索 MAPF 算法的具体行为。作为初步结果,我们集中研究了 EECBS(一种流行的次优 MAPF 算法),并观察到关于 EECBS 的运行时间、解质量以及生成地图的难度的若干发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quality Diversity Approach to Automatically Generate Multi-Agent Path Finding Benchmark Maps (Extended Abstract)
Multi-Agent Path Finding (MAPF) is a complex problem aiming at searching for paths where teams of agents navigate to their goal locations without collisions. Recent advancements in MAPF have highlighted the necessity for robust benchmarks to evaluate their performance. Previously, the benchmarks used to evaluate MAPF algorithms are predominantly fixed, human-designed maps, which cannot evaluate the behavior of the algorithms comprehensively, leading to potential failures in diverse map scenarios. Meanwhile, quality diversity (QD) algorithm is used to generate maps of high solution quality for MAPF. We employ this technique to automatically generate diverse benchmark maps and explore the detailed behavior of MAPF algorithms in the generated maps. As a preliminary result, we concentrate on EECBS, a popular sub-optimal MAPF algorithm, and observe several findings regarding the runtime and solution quality of EECBS, and difficulty of the generated maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信