稻草还田和氮肥对根瘤菌群和土壤肥力的协同效应

Nasita Rahman Borny, G. Mostakim, Asif Raihan, Md Shoaibur Rahman
{"title":"稻草还田和氮肥对根瘤菌群和土壤肥力的协同效应","authors":"Nasita Rahman Borny, G. Mostakim, Asif Raihan, Md Shoaibur Rahman","doi":"10.56946/jspae.v3i1.404","DOIUrl":null,"url":null,"abstract":"Returning straw to the field combined with nitrogen (N) fertilizer application is an effective way to enhance soil fertility. While previous studies have focused on soil's physical and chemical properties, the impact of straw returning on the microbial community has been less explored. In this study, we used four treatments including control (CK), nitrogen 150 kg ha−1 (N), straw return 10 tonnes ha−1 (SR), and combined SR and N (SRN= straw return 5 tonnes ha−1 + nitrogen 75 kg ha−1) to understand the effects of N fertilizer application and straw returning on bacterial community structure. Using high-throughput sequencing, we analyzed the bacterial community under different treatments and identified the main factors influencing soil bacterial communities. Results showed that soil properties such as pH, soil organic carbon (SOC), and available phosphorous (AP) were significantly higher in SR+N treatments. While AP, available nitrogen (AN), available potassium (AK), and total nitrogen (TN) were higher in sole N applied treatments.  The results of high-throughput sequencing analyses demonstrated that the main bacteria at the phylum level were Actinobacteria (31-34%), Proteobacteria (25-30%), Acidobacteria (15-21%), and Chloroflexi (13-16%) across the treatments. Furthermore, the SR+N treatment exhibited the highest relative abundances of Dependentiae, Proteobacteria, Chloroflexi, and Bacteroidetes compared to all other treatments. Our results indicated that the combined application of straw return and N fertilizer enhanced soil fertility and increased the abundance of beneficial soil bacteria. Additionally, SOC emerged as the primary factor influencing variations in soil bacterial communities. However, several beneficial bacteria were less abundant in the combined treatment and more prevalent in the sole SR or sole N treatments. Thus, further research is necessary to develop new straw return strategies that optimize agricultural yields while minimizing ecological impacts.","PeriodicalId":29812,"journal":{"name":"Journal of Soil, Plant and Environment","volume":"22 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Effects of Rice Straw Return and Nitrogen Fertilizer on Rhizosphere Bacterial Communities and Soil Fertility\",\"authors\":\"Nasita Rahman Borny, G. Mostakim, Asif Raihan, Md Shoaibur Rahman\",\"doi\":\"10.56946/jspae.v3i1.404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Returning straw to the field combined with nitrogen (N) fertilizer application is an effective way to enhance soil fertility. While previous studies have focused on soil's physical and chemical properties, the impact of straw returning on the microbial community has been less explored. In this study, we used four treatments including control (CK), nitrogen 150 kg ha−1 (N), straw return 10 tonnes ha−1 (SR), and combined SR and N (SRN= straw return 5 tonnes ha−1 + nitrogen 75 kg ha−1) to understand the effects of N fertilizer application and straw returning on bacterial community structure. Using high-throughput sequencing, we analyzed the bacterial community under different treatments and identified the main factors influencing soil bacterial communities. Results showed that soil properties such as pH, soil organic carbon (SOC), and available phosphorous (AP) were significantly higher in SR+N treatments. While AP, available nitrogen (AN), available potassium (AK), and total nitrogen (TN) were higher in sole N applied treatments.  The results of high-throughput sequencing analyses demonstrated that the main bacteria at the phylum level were Actinobacteria (31-34%), Proteobacteria (25-30%), Acidobacteria (15-21%), and Chloroflexi (13-16%) across the treatments. Furthermore, the SR+N treatment exhibited the highest relative abundances of Dependentiae, Proteobacteria, Chloroflexi, and Bacteroidetes compared to all other treatments. Our results indicated that the combined application of straw return and N fertilizer enhanced soil fertility and increased the abundance of beneficial soil bacteria. Additionally, SOC emerged as the primary factor influencing variations in soil bacterial communities. However, several beneficial bacteria were less abundant in the combined treatment and more prevalent in the sole SR or sole N treatments. Thus, further research is necessary to develop new straw return strategies that optimize agricultural yields while minimizing ecological impacts.\",\"PeriodicalId\":29812,\"journal\":{\"name\":\"Journal of Soil, Plant and Environment\",\"volume\":\"22 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil, Plant and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56946/jspae.v3i1.404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil, Plant and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56946/jspae.v3i1.404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

秸秆还田与氮肥施用相结合是提高土壤肥力的有效方法。以往的研究主要关注土壤的物理和化学性质,而对秸秆还田对微生物群落的影响则探讨较少。在本研究中,我们采用了四种处理,包括对照(CK)、氮肥 150 千克/公顷-1(N)、秸秆还田 10 吨/公顷-1(SR)以及 SR 和 N 混合处理(SRN=秸秆还田 5 吨/公顷-1 + 氮肥 75 千克/公顷-1),以了解施用氮肥和秸秆还田对细菌群落结构的影响。我们利用高通量测序技术分析了不同处理下的细菌群落,并确定了影响土壤细菌群落的主要因素。结果表明,在 SR+N 处理中,pH 值、土壤有机碳(SOC)和可利用磷(AP)等土壤特性显著提高。而在单施氮处理中,pH值、可用氮(AN)、可用钾(AK)和全氮(TN)均较高。 高通量测序分析结果表明,各处理的主要细菌门为放线菌(31-34%)、蛋白质细菌(25-30%)、酸性细菌(15-21%)和绿僵菌(13-16%)。此外,与所有其他处理相比,SR+N 处理显示出最高的依附菌、变形菌、绿僵菌和类杆菌相对丰度。我们的研究结果表明,联合施用秸秆还田肥和氮肥可以提高土壤肥力,增加土壤有益菌的数量。此外,SOC 是影响土壤细菌群落变化的主要因素。然而,在联合处理中,几种有益细菌的数量较少,而在单SR或单氮处理中,有益细菌的数量较多。因此,有必要开展进一步研究,以开发新的秸秆还田策略,在优化农业产量的同时最大限度地减少对生态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Effects of Rice Straw Return and Nitrogen Fertilizer on Rhizosphere Bacterial Communities and Soil Fertility
Returning straw to the field combined with nitrogen (N) fertilizer application is an effective way to enhance soil fertility. While previous studies have focused on soil's physical and chemical properties, the impact of straw returning on the microbial community has been less explored. In this study, we used four treatments including control (CK), nitrogen 150 kg ha−1 (N), straw return 10 tonnes ha−1 (SR), and combined SR and N (SRN= straw return 5 tonnes ha−1 + nitrogen 75 kg ha−1) to understand the effects of N fertilizer application and straw returning on bacterial community structure. Using high-throughput sequencing, we analyzed the bacterial community under different treatments and identified the main factors influencing soil bacterial communities. Results showed that soil properties such as pH, soil organic carbon (SOC), and available phosphorous (AP) were significantly higher in SR+N treatments. While AP, available nitrogen (AN), available potassium (AK), and total nitrogen (TN) were higher in sole N applied treatments.  The results of high-throughput sequencing analyses demonstrated that the main bacteria at the phylum level were Actinobacteria (31-34%), Proteobacteria (25-30%), Acidobacteria (15-21%), and Chloroflexi (13-16%) across the treatments. Furthermore, the SR+N treatment exhibited the highest relative abundances of Dependentiae, Proteobacteria, Chloroflexi, and Bacteroidetes compared to all other treatments. Our results indicated that the combined application of straw return and N fertilizer enhanced soil fertility and increased the abundance of beneficial soil bacteria. Additionally, SOC emerged as the primary factor influencing variations in soil bacterial communities. However, several beneficial bacteria were less abundant in the combined treatment and more prevalent in the sole SR or sole N treatments. Thus, further research is necessary to develop new straw return strategies that optimize agricultural yields while minimizing ecological impacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soil, Plant and Environment
Journal of Soil, Plant and Environment Agricultural Sciences-Environmental Sciences
自引率
0.00%
发文量
0
期刊介绍: Journal of Soil, Plant and Environment is an open peer-reviewed journal that considers articles and review articles on all aspects of agricultural sciences. Aim and Scope Journal of Soil, Plant and Environment (ISSN: 2957-9082) is an international journal dedicated to the advancements in agriculture throughout the world. The goal of this journal is to provide a platform for scientists, students, academics and engineers all over the world to promote, share, and discuss various new issues and developments in different areas of agricultural sciences. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted papers will appear online within 3 weeks followed by printed hard copy. Journal of Soil, Plant and Environment (ISSN: 2957-9082) publishes original papers including but not limited to the following fields: Soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture. We are also interested in: 1) Short Reports– 2-5 pages where the paper is intended to present either an original idea with theoretical treatment or preliminary data and results; 2) Book Reviews – Comments and critiques of recently published books in agricultural sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信