保护轨迹隐私的高效抑制算法

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chen-Yi Lin
{"title":"保护轨迹隐私的高效抑制算法","authors":"Chen-Yi Lin","doi":"10.1016/j.ins.2024.120837","DOIUrl":null,"url":null,"abstract":"<div><p>Concerns about the security of trajectory data have surfaced amid rising public awareness of privacy protection. In this study, we focus on how to protect personal information effectively when adversaries have access to a portion of users’ trajectory data. To resolve this issue, we design a graph-based index structure to store users’ trajectory data and develop a novel subtrajectory upper bound estimation method and corresponding pruning strategies. Using a graph-based index structure and pruning strategies, we propose a global suppression algorithm and a local suppression algorithm to prevent personal information from being extracted from the original trajectory data. Experimental results show that the maintenance cost of the graph-based index structure is low when performing global and local suppression, and that the pruning strategies effectively eliminate unnecessary computation of non-upper-bound subtrajectories. Therefore, the execution times of the proposed algorithms are far shorter than those of existing algorithms.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient suppression algorithms for preserving trajectory privacy\",\"authors\":\"Chen-Yi Lin\",\"doi\":\"10.1016/j.ins.2024.120837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Concerns about the security of trajectory data have surfaced amid rising public awareness of privacy protection. In this study, we focus on how to protect personal information effectively when adversaries have access to a portion of users’ trajectory data. To resolve this issue, we design a graph-based index structure to store users’ trajectory data and develop a novel subtrajectory upper bound estimation method and corresponding pruning strategies. Using a graph-based index structure and pruning strategies, we propose a global suppression algorithm and a local suppression algorithm to prevent personal information from being extracted from the original trajectory data. Experimental results show that the maintenance cost of the graph-based index structure is low when performing global and local suppression, and that the pruning strategies effectively eliminate unnecessary computation of non-upper-bound subtrajectories. Therefore, the execution times of the proposed algorithms are far shorter than those of existing algorithms.</p></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524007515\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524007515","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着公众隐私保护意识的提高,对轨迹数据安全性的担忧也浮出水面。在本研究中,我们将重点放在当对手可以访问部分用户轨迹数据时,如何有效保护个人信息。为了解决这个问题,我们设计了一种基于图的索引结构来存储用户的轨迹数据,并开发了一种新颖的子轨迹上界估计方法和相应的剪枝策略。利用基于图的索引结构和剪枝策略,我们提出了一种全局抑制算法和一种局部抑制算法,以防止从原始轨迹数据中提取个人信息。实验结果表明,在执行全局和局部抑制时,基于图的索引结构的维护成本很低,剪枝策略能有效消除对非上界子轨迹的不必要计算。因此,建议算法的执行时间远远短于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient suppression algorithms for preserving trajectory privacy

Concerns about the security of trajectory data have surfaced amid rising public awareness of privacy protection. In this study, we focus on how to protect personal information effectively when adversaries have access to a portion of users’ trajectory data. To resolve this issue, we design a graph-based index structure to store users’ trajectory data and develop a novel subtrajectory upper bound estimation method and corresponding pruning strategies. Using a graph-based index structure and pruning strategies, we propose a global suppression algorithm and a local suppression algorithm to prevent personal information from being extracted from the original trajectory data. Experimental results show that the maintenance cost of the graph-based index structure is low when performing global and local suppression, and that the pruning strategies effectively eliminate unnecessary computation of non-upper-bound subtrajectories. Therefore, the execution times of the proposed algorithms are far shorter than those of existing algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信