{"title":"保护轨迹隐私的高效抑制算法","authors":"Chen-Yi Lin","doi":"10.1016/j.ins.2024.120837","DOIUrl":null,"url":null,"abstract":"<div><p>Concerns about the security of trajectory data have surfaced amid rising public awareness of privacy protection. In this study, we focus on how to protect personal information effectively when adversaries have access to a portion of users’ trajectory data. To resolve this issue, we design a graph-based index structure to store users’ trajectory data and develop a novel subtrajectory upper bound estimation method and corresponding pruning strategies. Using a graph-based index structure and pruning strategies, we propose a global suppression algorithm and a local suppression algorithm to prevent personal information from being extracted from the original trajectory data. Experimental results show that the maintenance cost of the graph-based index structure is low when performing global and local suppression, and that the pruning strategies effectively eliminate unnecessary computation of non-upper-bound subtrajectories. Therefore, the execution times of the proposed algorithms are far shorter than those of existing algorithms.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient suppression algorithms for preserving trajectory privacy\",\"authors\":\"Chen-Yi Lin\",\"doi\":\"10.1016/j.ins.2024.120837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Concerns about the security of trajectory data have surfaced amid rising public awareness of privacy protection. In this study, we focus on how to protect personal information effectively when adversaries have access to a portion of users’ trajectory data. To resolve this issue, we design a graph-based index structure to store users’ trajectory data and develop a novel subtrajectory upper bound estimation method and corresponding pruning strategies. Using a graph-based index structure and pruning strategies, we propose a global suppression algorithm and a local suppression algorithm to prevent personal information from being extracted from the original trajectory data. Experimental results show that the maintenance cost of the graph-based index structure is low when performing global and local suppression, and that the pruning strategies effectively eliminate unnecessary computation of non-upper-bound subtrajectories. Therefore, the execution times of the proposed algorithms are far shorter than those of existing algorithms.</p></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524007515\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524007515","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Efficient suppression algorithms for preserving trajectory privacy
Concerns about the security of trajectory data have surfaced amid rising public awareness of privacy protection. In this study, we focus on how to protect personal information effectively when adversaries have access to a portion of users’ trajectory data. To resolve this issue, we design a graph-based index structure to store users’ trajectory data and develop a novel subtrajectory upper bound estimation method and corresponding pruning strategies. Using a graph-based index structure and pruning strategies, we propose a global suppression algorithm and a local suppression algorithm to prevent personal information from being extracted from the original trajectory data. Experimental results show that the maintenance cost of the graph-based index structure is low when performing global and local suppression, and that the pruning strategies effectively eliminate unnecessary computation of non-upper-bound subtrajectories. Therefore, the execution times of the proposed algorithms are far shorter than those of existing algorithms.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.