用于提高薄壁零件车削精度的感应卡爪

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
{"title":"用于提高薄壁零件车削精度的感应卡爪","authors":"","doi":"10.1016/j.cirp.2024.04.082","DOIUrl":null,"url":null,"abstract":"<div><p>In turning thin-walled parts, machining errors and deviations from the aspired workpiece shape occur due to influences of the workpiece clamping and elastic deformations of the workpiece caused by clamping forces. This paper introduces a newly designed sensor integrated chuck jaw for turning applications, which allows for an on-line monitoring of the actual clamping forces and an in-process prediction of shape deviations of the machined parts. The design and characteristics of the sensory jaw are described and its monitoring capability is validated in turning experiments. Correlations of sensor data with workpiece shape deviations and models for error prediction are analyzed.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 285-288"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000969/pdfft?md5=c1977d3aa572baa3d3920c6b8feeadb7&pid=1-s2.0-S0007850624000969-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensory chuck jaw for enhancing accuracy in turning thin‐walled parts\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In turning thin-walled parts, machining errors and deviations from the aspired workpiece shape occur due to influences of the workpiece clamping and elastic deformations of the workpiece caused by clamping forces. This paper introduces a newly designed sensor integrated chuck jaw for turning applications, which allows for an on-line monitoring of the actual clamping forces and an in-process prediction of shape deviations of the machined parts. The design and characteristics of the sensory jaw are described and its monitoring capability is validated in turning experiments. Correlations of sensor data with workpiece shape deviations and models for error prediction are analyzed.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 285-288\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000969/pdfft?md5=c1977d3aa572baa3d3920c6b8feeadb7&pid=1-s2.0-S0007850624000969-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000969\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000969","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

在车削薄壁零件时,由于工件夹紧和夹紧力引起的工件弹性变形的影响,会出现加工误差和与期望工件形状的偏差。本文介绍了一种新设计的用于车削应用的传感器集成卡爪,它可以在线监测实际夹紧力,并在加工过程中预测加工零件的形状偏差。本文介绍了传感器卡爪的设计和特性,并在车削实验中验证了其监测能力。分析了传感器数据与工件形状偏差的相关性以及误差预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensory chuck jaw for enhancing accuracy in turning thin‐walled parts

In turning thin-walled parts, machining errors and deviations from the aspired workpiece shape occur due to influences of the workpiece clamping and elastic deformations of the workpiece caused by clamping forces. This paper introduces a newly designed sensor integrated chuck jaw for turning applications, which allows for an on-line monitoring of the actual clamping forces and an in-process prediction of shape deviations of the machined parts. The design and characteristics of the sensory jaw are described and its monitoring capability is validated in turning experiments. Correlations of sensor data with workpiece shape deviations and models for error prediction are analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信