{"title":"多孔介质中微胶囊聚合物原位触发位移机制的可视化实验研究","authors":"Yongsheng Liu, Bei Wei, Xulong Cao, Kaoping Song, Fuqing Yuan, Yu Xue, Jianyong Wang, Lei Tang, Yongge Liu, Zhijie Wei, Jian Zhang, Jian Hou","doi":"10.2118/221460-pa","DOIUrl":null,"url":null,"abstract":"\n Polymer flooding in deep reservoir profile control presents challenges in balancing injectivity and effective mobility control. To address this, we propose a solution by utilizing a microencapsulated polymer that can be easily injected and thickens over time. However, limited research has been conducted on the flow characteristics and the impact on oil mobilization by such profile control agents. In this study, we approximately simulated the time-varying flow process of microencapsulated polymer through in-situ triggered experiments at high temperature and pressure. The flow characteristics and oil displacement mechanism of the microencapsulated polymer under different trigger times were analyzed, and the displacement efficiency during the triggered viscosity enhancement process in porous media was quantitatively evaluated. The experimental results reveal that microencapsulated polymer exhibits a dual mechanism of near-wellbore reservoir particle temporary plugging and deep formation consistency control mechanisms. The transient aggregation of capsule particles alters the flow path, intensifying after expansion. The interaction between the microcapsule particles and the partially released polymer further enhances the resistance-enhancing property of the solution. The viscosity-enhanced microencapsulated polymer fluid improves the displacement efficiency. Microscopic oil displacement and coreflooding experiments resulted in a decrease in oil saturation of 39.5 and 18.33%, respectively. This study provides valuable microscopic insights into the flow behavior and oil displacement performance of microencapsulated polymer, offering essential guidance for optimizing oil reservoir extraction strategies.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"17 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization Experimental Study on In-Situ Triggered Displacement Mechanism by Microencapsulated Polymer in Porous Media\",\"authors\":\"Yongsheng Liu, Bei Wei, Xulong Cao, Kaoping Song, Fuqing Yuan, Yu Xue, Jianyong Wang, Lei Tang, Yongge Liu, Zhijie Wei, Jian Zhang, Jian Hou\",\"doi\":\"10.2118/221460-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polymer flooding in deep reservoir profile control presents challenges in balancing injectivity and effective mobility control. To address this, we propose a solution by utilizing a microencapsulated polymer that can be easily injected and thickens over time. However, limited research has been conducted on the flow characteristics and the impact on oil mobilization by such profile control agents. In this study, we approximately simulated the time-varying flow process of microencapsulated polymer through in-situ triggered experiments at high temperature and pressure. The flow characteristics and oil displacement mechanism of the microencapsulated polymer under different trigger times were analyzed, and the displacement efficiency during the triggered viscosity enhancement process in porous media was quantitatively evaluated. The experimental results reveal that microencapsulated polymer exhibits a dual mechanism of near-wellbore reservoir particle temporary plugging and deep formation consistency control mechanisms. The transient aggregation of capsule particles alters the flow path, intensifying after expansion. The interaction between the microcapsule particles and the partially released polymer further enhances the resistance-enhancing property of the solution. The viscosity-enhanced microencapsulated polymer fluid improves the displacement efficiency. Microscopic oil displacement and coreflooding experiments resulted in a decrease in oil saturation of 39.5 and 18.33%, respectively. This study provides valuable microscopic insights into the flow behavior and oil displacement performance of microencapsulated polymer, offering essential guidance for optimizing oil reservoir extraction strategies.\",\"PeriodicalId\":510854,\"journal\":{\"name\":\"SPE Journal\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/221460-pa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/221460-pa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualization Experimental Study on In-Situ Triggered Displacement Mechanism by Microencapsulated Polymer in Porous Media
Polymer flooding in deep reservoir profile control presents challenges in balancing injectivity and effective mobility control. To address this, we propose a solution by utilizing a microencapsulated polymer that can be easily injected and thickens over time. However, limited research has been conducted on the flow characteristics and the impact on oil mobilization by such profile control agents. In this study, we approximately simulated the time-varying flow process of microencapsulated polymer through in-situ triggered experiments at high temperature and pressure. The flow characteristics and oil displacement mechanism of the microencapsulated polymer under different trigger times were analyzed, and the displacement efficiency during the triggered viscosity enhancement process in porous media was quantitatively evaluated. The experimental results reveal that microencapsulated polymer exhibits a dual mechanism of near-wellbore reservoir particle temporary plugging and deep formation consistency control mechanisms. The transient aggregation of capsule particles alters the flow path, intensifying after expansion. The interaction between the microcapsule particles and the partially released polymer further enhances the resistance-enhancing property of the solution. The viscosity-enhanced microencapsulated polymer fluid improves the displacement efficiency. Microscopic oil displacement and coreflooding experiments resulted in a decrease in oil saturation of 39.5 and 18.33%, respectively. This study provides valuable microscopic insights into the flow behavior and oil displacement performance of microencapsulated polymer, offering essential guidance for optimizing oil reservoir extraction strategies.