{"title":"利用改进的人工神经网络模型加强网络威胁检测","authors":"Toluwase Sunday Oyinloye , Micheal Olaolu Arowolo , Rajesh Prasad","doi":"10.1016/j.dsm.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems (IDS). Data labeling difficulties, incorrect conclusions, and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity. To overcome these obstacles, researchers have created several network IDS models, such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques. This study provides an updated learning strategy for artificial neural network (ANN) to address data categorization problems caused by unbalanced data. Compared to traditional approaches, the augmented ANN’s 92% accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity, brought about by the addition of a random weight and standard scaler. Considering the ever-evolving nature of cybersecurity threats, this study introduces a revolutionary intrusion detection method.</div></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":"8 1","pages":"Pages 107-115"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing cyber threat detection with an improved artificial neural network model\",\"authors\":\"Toluwase Sunday Oyinloye , Micheal Olaolu Arowolo , Rajesh Prasad\",\"doi\":\"10.1016/j.dsm.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems (IDS). Data labeling difficulties, incorrect conclusions, and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity. To overcome these obstacles, researchers have created several network IDS models, such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques. This study provides an updated learning strategy for artificial neural network (ANN) to address data categorization problems caused by unbalanced data. Compared to traditional approaches, the augmented ANN’s 92% accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity, brought about by the addition of a random weight and standard scaler. Considering the ever-evolving nature of cybersecurity threats, this study introduces a revolutionary intrusion detection method.</div></div>\",\"PeriodicalId\":100353,\"journal\":{\"name\":\"Data Science and Management\",\"volume\":\"8 1\",\"pages\":\"Pages 107-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666764924000316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764924000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing cyber threat detection with an improved artificial neural network model
Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems (IDS). Data labeling difficulties, incorrect conclusions, and vulnerability to malicious data injections are only a few drawbacks of using machine learning algorithms for cybersecurity. To overcome these obstacles, researchers have created several network IDS models, such as the Hidden Naive Bayes Multiclass Classifier and supervised/unsupervised machine learning techniques. This study provides an updated learning strategy for artificial neural network (ANN) to address data categorization problems caused by unbalanced data. Compared to traditional approaches, the augmented ANN’s 92% accuracy is a significant improvement owing to the network’s increased resilience to disturbances and computational complexity, brought about by the addition of a random weight and standard scaler. Considering the ever-evolving nature of cybersecurity threats, this study introduces a revolutionary intrusion detection method.