Ming-Li Liu, Hai-Feng Jiang, Xue-Ling Zhang, Cai-Xia Lu
{"title":"老年重症肺炎的风险因素分析和预测模型构建","authors":"Ming-Li Liu, Hai-Feng Jiang, Xue-Ling Zhang, Cai-Xia Lu","doi":"10.3389/fpubh.2024.1399470","DOIUrl":null,"url":null,"abstract":"Pneumonia is a common and serious infectious disease that affects the older adult population. Severe pneumonia can lead to high mortality and morbidity in this group. Therefore, it is important to identify the risk factors and develop a prediction model for severe pneumonia in older adult patients.In this study, we collected data from 1,000 older adult patients who were diagnosed with pneumonia and admitted to the intensive care unit (ICU) in a tertiary hospital. We used logistic regression and machine learning methods to analyze the risk factors and construct a prediction model for severe pneumonia in older adult patients. We evaluated the performance of the model using accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and calibration plot.We found that age, comorbidities, vital signs, laboratory tests, and radiological findings were associated with severe pneumonia in older adult patients. The prediction model had an accuracy of 0.85, a sensitivity of 0.80, a specificity of 0.88, and an AUC of 0.90. The calibration plot showed good agreement between the predicted and observed probabilities of severe pneumonia.The prediction model can help clinicians to stratify the risk of severe pneumonia in older adult patients and provide timely and appropriate interventions.","PeriodicalId":510753,"journal":{"name":"Frontiers in Public Health","volume":"31 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk factors analysis and prediction model construction for severe pneumonia in older adult patients\",\"authors\":\"Ming-Li Liu, Hai-Feng Jiang, Xue-Ling Zhang, Cai-Xia Lu\",\"doi\":\"10.3389/fpubh.2024.1399470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumonia is a common and serious infectious disease that affects the older adult population. Severe pneumonia can lead to high mortality and morbidity in this group. Therefore, it is important to identify the risk factors and develop a prediction model for severe pneumonia in older adult patients.In this study, we collected data from 1,000 older adult patients who were diagnosed with pneumonia and admitted to the intensive care unit (ICU) in a tertiary hospital. We used logistic regression and machine learning methods to analyze the risk factors and construct a prediction model for severe pneumonia in older adult patients. We evaluated the performance of the model using accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and calibration plot.We found that age, comorbidities, vital signs, laboratory tests, and radiological findings were associated with severe pneumonia in older adult patients. The prediction model had an accuracy of 0.85, a sensitivity of 0.80, a specificity of 0.88, and an AUC of 0.90. The calibration plot showed good agreement between the predicted and observed probabilities of severe pneumonia.The prediction model can help clinicians to stratify the risk of severe pneumonia in older adult patients and provide timely and appropriate interventions.\",\"PeriodicalId\":510753,\"journal\":{\"name\":\"Frontiers in Public Health\",\"volume\":\"31 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Public Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fpubh.2024.1399470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Public Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpubh.2024.1399470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Risk factors analysis and prediction model construction for severe pneumonia in older adult patients
Pneumonia is a common and serious infectious disease that affects the older adult population. Severe pneumonia can lead to high mortality and morbidity in this group. Therefore, it is important to identify the risk factors and develop a prediction model for severe pneumonia in older adult patients.In this study, we collected data from 1,000 older adult patients who were diagnosed with pneumonia and admitted to the intensive care unit (ICU) in a tertiary hospital. We used logistic regression and machine learning methods to analyze the risk factors and construct a prediction model for severe pneumonia in older adult patients. We evaluated the performance of the model using accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and calibration plot.We found that age, comorbidities, vital signs, laboratory tests, and radiological findings were associated with severe pneumonia in older adult patients. The prediction model had an accuracy of 0.85, a sensitivity of 0.80, a specificity of 0.88, and an AUC of 0.90. The calibration plot showed good agreement between the predicted and observed probabilities of severe pneumonia.The prediction model can help clinicians to stratify the risk of severe pneumonia in older adult patients and provide timely and appropriate interventions.