由广义分式最大函数生成的单调函数的圆锥

N. Bokayev, Amiran Gogatishvili, Azhan N. abek
{"title":"由广义分式最大函数生成的单调函数的圆锥","authors":"N. Bokayev, Amiran Gogatishvili, Azhan N. abek","doi":"10.30546/2219-1259.15.1.2024.2487","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the generalized fractional maximal function and use it to introduce the space of generalized fractional maximal functions and the various cones of monotone functions generated by generalized fractional maximal functions $M_\\Phi f$. We introduced three function classes. We give equivalent descriptions of such cones when the function $\\Phi$ belongs to some function classes. The conditions for their mutual covering are given. Then, these cones are used to construct a criterion for embedding the space of generalized fractional maximal functions into the rearrangement invariant spaces (RIS). The optimal RIS for such embedding is also described.","PeriodicalId":447748,"journal":{"name":"Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONES OF MONOTONE FUNCTIONS GENERATED BY A GENERALIZED FRACTIONAL MAXIMAL FUNCTION\",\"authors\":\"N. Bokayev, Amiran Gogatishvili, Azhan N. abek\",\"doi\":\"10.30546/2219-1259.15.1.2024.2487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the generalized fractional maximal function and use it to introduce the space of generalized fractional maximal functions and the various cones of monotone functions generated by generalized fractional maximal functions $M_\\\\Phi f$. We introduced three function classes. We give equivalent descriptions of such cones when the function $\\\\Phi$ belongs to some function classes. The conditions for their mutual covering are given. Then, these cones are used to construct a criterion for embedding the space of generalized fractional maximal functions into the rearrangement invariant spaces (RIS). The optimal RIS for such embedding is also described.\",\"PeriodicalId\":447748,\"journal\":{\"name\":\"Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30546/2219-1259.15.1.2024.2487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkic World Mathematical Society (TWMS) Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30546/2219-1259.15.1.2024.2487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了广义分式最大函数,并利用它介绍了广义分式最大函数空间以及由广义分式最大函数 $M_\Phi f$ 生成的各种单调函数锥。我们引入了三个函数类。当函数 $\Phi$ 属于某些函数类时,我们给出了这些锥的等价描述。给出了它们相互覆盖的条件。然后,这些锥形被用来构建将广义分数最大函数空间嵌入重排不变空间(RIS)的准则。还描述了这种嵌入的最优 RIS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONES OF MONOTONE FUNCTIONS GENERATED BY A GENERALIZED FRACTIONAL MAXIMAL FUNCTION
In this paper, we consider the generalized fractional maximal function and use it to introduce the space of generalized fractional maximal functions and the various cones of monotone functions generated by generalized fractional maximal functions $M_\Phi f$. We introduced three function classes. We give equivalent descriptions of such cones when the function $\Phi$ belongs to some function classes. The conditions for their mutual covering are given. Then, these cones are used to construct a criterion for embedding the space of generalized fractional maximal functions into the rearrangement invariant spaces (RIS). The optimal RIS for such embedding is also described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信