APIR:聚合通用蛋白质组学数据库搜索算法,利用 FDR 控制进行多肽鉴定

Y. Chen, Xinzhou Ge, Kyla Woyshner, MeiLu McDermott, A. Manousopoulou, S. Ficarro, J. Marto, Kexin Li, Leo David Wang, Jingyi Jessica Li
{"title":"APIR:聚合通用蛋白质组学数据库搜索算法,利用 FDR 控制进行多肽鉴定","authors":"Y. Chen, Xinzhou Ge, Kyla Woyshner, MeiLu McDermott, A. Manousopoulou, S. Ficarro, J. Marto, Kexin Li, Leo David Wang, Jingyi Jessica Li","doi":"10.1093/gpbjnl/qzae042","DOIUrl":null,"url":null,"abstract":"\n Advances in mass spectrometry (MS) have enabled high-throughput analysis of proteomes in biological systems. The state-of-the-art MS data analysis relies on database search algorithms to quantify proteins by identifying peptide-spectrum matches (PSMs), which convert mass spectra to peptide sequences. Different database search algorithms use distinct search strategies and thus may identify unique PSMs. However, no existing approaches can aggregate all user-specified database search algorithms with a guaranteed increase in the number of identified peptides and control on the false discovery rate (FDR). To fill in this gap, we proposed a statistical framework, Aggregation of Peptide Identification Results (APIR), that is universally compatible with all database search algorithms. Notably, under an FDR threshold, APIR is guaranteed to identify at least as many, if not more, peptides as individual database search algorithms do. Evaluation of APIR on a complex proteomics standard showed that APIR outpowers individual database search algorithms and empirically controls the FDR. Real data studies showed that APIR can identify disease-related proteins and post-translational modifications missed by some individual database search algorithms. The APIR framework is easily extendable to aggregating discoveries made by multiple algorithms in other high-throughput biomedical data analysis, e.g., differential gene expression analysis on RNA sequencing data. The APIR R package is available at https://github.com/yiling0210/APIR.","PeriodicalId":170516,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"117 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APIR: Aggregating Universal Proteomics Database Search Algorithms for Peptide Identification with FDR Control\",\"authors\":\"Y. Chen, Xinzhou Ge, Kyla Woyshner, MeiLu McDermott, A. Manousopoulou, S. Ficarro, J. Marto, Kexin Li, Leo David Wang, Jingyi Jessica Li\",\"doi\":\"10.1093/gpbjnl/qzae042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Advances in mass spectrometry (MS) have enabled high-throughput analysis of proteomes in biological systems. The state-of-the-art MS data analysis relies on database search algorithms to quantify proteins by identifying peptide-spectrum matches (PSMs), which convert mass spectra to peptide sequences. Different database search algorithms use distinct search strategies and thus may identify unique PSMs. However, no existing approaches can aggregate all user-specified database search algorithms with a guaranteed increase in the number of identified peptides and control on the false discovery rate (FDR). To fill in this gap, we proposed a statistical framework, Aggregation of Peptide Identification Results (APIR), that is universally compatible with all database search algorithms. Notably, under an FDR threshold, APIR is guaranteed to identify at least as many, if not more, peptides as individual database search algorithms do. Evaluation of APIR on a complex proteomics standard showed that APIR outpowers individual database search algorithms and empirically controls the FDR. Real data studies showed that APIR can identify disease-related proteins and post-translational modifications missed by some individual database search algorithms. The APIR framework is easily extendable to aggregating discoveries made by multiple algorithms in other high-throughput biomedical data analysis, e.g., differential gene expression analysis on RNA sequencing data. The APIR R package is available at https://github.com/yiling0210/APIR.\",\"PeriodicalId\":170516,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"117 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzae042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

质谱(MS)技术的进步实现了对生物系统中蛋白质组的高通量分析。最先进的质谱数据分析依赖于数据库搜索算法,通过识别肽谱匹配(PSM)将质谱转换为肽序列来量化蛋白质。不同的数据库搜索算法使用不同的搜索策略,因此可能识别出独特的 PSMs。然而,目前还没有任何一种方法能将用户指定的所有数据库搜索算法整合在一起,同时保证增加已识别肽段的数量并控制误发现率(FDR)。为了填补这一空白,我们提出了一种统计框架--多肽鉴定结果聚合(Aggregation of Peptide Identification Results,APIR),它与所有数据库搜索算法普遍兼容。值得注意的是,在FDR阈值下,APIR能保证识别出至少与单个数据库搜索算法一样多(如果不是更多的话)的多肽。在复杂蛋白质组学标准上对 APIR 的评估表明,APIR 优于单个数据库搜索算法,并根据经验控制了 FDR。真实数据研究表明,APIR 可以识别与疾病相关的蛋白质和一些单独的数据库搜索算法所遗漏的翻译后修饰。APIR 框架很容易扩展到在其他高通量生物医学数据分析中汇总多种算法的发现,例如 RNA 测序数据的差异基因表达分析。APIR R软件包可在https://github.com/yiling0210/APIR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APIR: Aggregating Universal Proteomics Database Search Algorithms for Peptide Identification with FDR Control
Advances in mass spectrometry (MS) have enabled high-throughput analysis of proteomes in biological systems. The state-of-the-art MS data analysis relies on database search algorithms to quantify proteins by identifying peptide-spectrum matches (PSMs), which convert mass spectra to peptide sequences. Different database search algorithms use distinct search strategies and thus may identify unique PSMs. However, no existing approaches can aggregate all user-specified database search algorithms with a guaranteed increase in the number of identified peptides and control on the false discovery rate (FDR). To fill in this gap, we proposed a statistical framework, Aggregation of Peptide Identification Results (APIR), that is universally compatible with all database search algorithms. Notably, under an FDR threshold, APIR is guaranteed to identify at least as many, if not more, peptides as individual database search algorithms do. Evaluation of APIR on a complex proteomics standard showed that APIR outpowers individual database search algorithms and empirically controls the FDR. Real data studies showed that APIR can identify disease-related proteins and post-translational modifications missed by some individual database search algorithms. The APIR framework is easily extendable to aggregating discoveries made by multiple algorithms in other high-throughput biomedical data analysis, e.g., differential gene expression analysis on RNA sequencing data. The APIR R package is available at https://github.com/yiling0210/APIR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信