{"title":"在三维生物膜电极反应器中利用氧化石墨烯改性阴极增强污水处理厂二级出水的脱硝效果","authors":"Ying Xue, Chaojie Zhang, Sibo Li, Qi Zhou, Xuefei Zhou, Yalei Zhang","doi":"10.2166/wst.2024.179","DOIUrl":null,"url":null,"abstract":"\n \n In this study, a novel three-dimensional biofilm electrode reactor (3D-BER) with a graphene oxide (GO)–modified cathode was developed to enhance the denitrification performance of secondary effluent from wastewater treatment plants (SEWTPs). The effects of different HRTs and currents on the 3D-BER were explored. The results indicated that at the optimal HRT of 4 h and current of 350 mA/m2, the 3D-BER with GO-modified cathode had a higher denitrification rate (2.40 ± 0.1 mg TN/L/h) and less accumulation of intermediate products, especially with 3.34% TN molar conversion to N2O. The GO-modified cathode offered a large biocompatible specific surface area and enhanced the conductivity, which favored microbial growth and increased electron transfer efficiency and extracellular enzyme activities. Moreover, the activity of nitrite reductase increased more than that of nitrate reductase to accelerate nitrite reduction, thus facilitating the denitrification process. The proposed 3D-BER provided an effective solution to elevate tertiary denitrification in the SEWTP.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"31 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced denitrification by graphene oxide–modified cathode for the secondary effluent of wastewater treatment plants in three-dimensional biofilm electrode reactors\",\"authors\":\"Ying Xue, Chaojie Zhang, Sibo Li, Qi Zhou, Xuefei Zhou, Yalei Zhang\",\"doi\":\"10.2166/wst.2024.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n In this study, a novel three-dimensional biofilm electrode reactor (3D-BER) with a graphene oxide (GO)–modified cathode was developed to enhance the denitrification performance of secondary effluent from wastewater treatment plants (SEWTPs). The effects of different HRTs and currents on the 3D-BER were explored. The results indicated that at the optimal HRT of 4 h and current of 350 mA/m2, the 3D-BER with GO-modified cathode had a higher denitrification rate (2.40 ± 0.1 mg TN/L/h) and less accumulation of intermediate products, especially with 3.34% TN molar conversion to N2O. The GO-modified cathode offered a large biocompatible specific surface area and enhanced the conductivity, which favored microbial growth and increased electron transfer efficiency and extracellular enzyme activities. Moreover, the activity of nitrite reductase increased more than that of nitrate reductase to accelerate nitrite reduction, thus facilitating the denitrification process. The proposed 3D-BER provided an effective solution to elevate tertiary denitrification in the SEWTP.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced denitrification by graphene oxide–modified cathode for the secondary effluent of wastewater treatment plants in three-dimensional biofilm electrode reactors
In this study, a novel three-dimensional biofilm electrode reactor (3D-BER) with a graphene oxide (GO)–modified cathode was developed to enhance the denitrification performance of secondary effluent from wastewater treatment plants (SEWTPs). The effects of different HRTs and currents on the 3D-BER were explored. The results indicated that at the optimal HRT of 4 h and current of 350 mA/m2, the 3D-BER with GO-modified cathode had a higher denitrification rate (2.40 ± 0.1 mg TN/L/h) and less accumulation of intermediate products, especially with 3.34% TN molar conversion to N2O. The GO-modified cathode offered a large biocompatible specific surface area and enhanced the conductivity, which favored microbial growth and increased electron transfer efficiency and extracellular enzyme activities. Moreover, the activity of nitrite reductase increased more than that of nitrate reductase to accelerate nitrite reduction, thus facilitating the denitrification process. The proposed 3D-BER provided an effective solution to elevate tertiary denitrification in the SEWTP.