充当约旦同态的广义偏斜推导

Q2 Mathematics
Pallavee Gupta, S. K. Tiwari
{"title":"充当约旦同态的广义偏斜推导","authors":"Pallavee Gupta,&nbsp;S. K. Tiwari","doi":"10.1007/s11565-024-00534-4","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose <span>\\({\\mathcal {R}}\\)</span> is a prime ring with characteristic other than two and <span>\\(\\nu (s_1,\\ldots , s_n)\\)</span> is a non-central multilinear polynomial over <span>\\({\\mathcal {C}}\\)</span>, which is non-identity. If <span>\\({\\mathcal {H}}_1\\)</span> and <span>\\({\\mathcal {H}}_2\\)</span> are two generalized skew derivations on the ring <span>\\({\\mathcal {R}}\\)</span>, satisfying the equation </p><div><div><span>$$\\begin{aligned} {\\mathcal {H}}_1({\\mathcal {H}}_2(\\nu (s)^2))={\\mathcal {H}}_2(\\nu (s))^2 \\end{aligned}$$</span></div></div><p>for all <span>\\(s = (s_1, \\ldots , s_n) \\in {\\mathcal {R}}^n.\\)</span> Then, we provide a comprehensive analysis of the mappings <span>\\( {\\mathcal {H}}_1\\)</span> and <span>\\({\\mathcal {H}}_2\\)</span> outlining their complete structure.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1635 - 1654"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized skew derivations acting as Jordan homomorphism\",\"authors\":\"Pallavee Gupta,&nbsp;S. K. Tiwari\",\"doi\":\"10.1007/s11565-024-00534-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Suppose <span>\\\\({\\\\mathcal {R}}\\\\)</span> is a prime ring with characteristic other than two and <span>\\\\(\\\\nu (s_1,\\\\ldots , s_n)\\\\)</span> is a non-central multilinear polynomial over <span>\\\\({\\\\mathcal {C}}\\\\)</span>, which is non-identity. If <span>\\\\({\\\\mathcal {H}}_1\\\\)</span> and <span>\\\\({\\\\mathcal {H}}_2\\\\)</span> are two generalized skew derivations on the ring <span>\\\\({\\\\mathcal {R}}\\\\)</span>, satisfying the equation </p><div><div><span>$$\\\\begin{aligned} {\\\\mathcal {H}}_1({\\\\mathcal {H}}_2(\\\\nu (s)^2))={\\\\mathcal {H}}_2(\\\\nu (s))^2 \\\\end{aligned}$$</span></div></div><p>for all <span>\\\\(s = (s_1, \\\\ldots , s_n) \\\\in {\\\\mathcal {R}}^n.\\\\)</span> Then, we provide a comprehensive analysis of the mappings <span>\\\\( {\\\\mathcal {H}}_1\\\\)</span> and <span>\\\\({\\\\mathcal {H}}_2\\\\)</span> outlining their complete structure.\\n</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 4\",\"pages\":\"1635 - 1654\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00534-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00534-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

假设\({\mathcal {R}}\)是一个特性不为2的素环,并且\(\nu (s_1,\ldots , s_n)\)是\({\mathcal {C}}\)上的一个非中心多线性多项式,它是非同一性的。如果 \({\mathcal {H}}_1\) 和 \({\mathcal {H}}_2\) 是环\({\mathcal {R}}\) 上的两个广义倾斜导数、满足等式 $$\begin{aligned} {\mathcal {H}}_1({\mathcal {H}}_2(\nu (s)^2))=\{mathcal {H}}_2(\nu (s))^2 \end{aligned}$$ 对于所有 \(s = (s_1, \ldots , s_n) \ in {\mathcal {R}}^n.\)然后,我们对映射 \( {\mathcal {H}}_1\) 和 \({\mathcal {H}}_2\) 进行了全面的分析,概述了它们的完整结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized skew derivations acting as Jordan homomorphism

Suppose \({\mathcal {R}}\) is a prime ring with characteristic other than two and \(\nu (s_1,\ldots , s_n)\) is a non-central multilinear polynomial over \({\mathcal {C}}\), which is non-identity. If \({\mathcal {H}}_1\) and \({\mathcal {H}}_2\) are two generalized skew derivations on the ring \({\mathcal {R}}\), satisfying the equation

$$\begin{aligned} {\mathcal {H}}_1({\mathcal {H}}_2(\nu (s)^2))={\mathcal {H}}_2(\nu (s))^2 \end{aligned}$$

for all \(s = (s_1, \ldots , s_n) \in {\mathcal {R}}^n.\) Then, we provide a comprehensive analysis of the mappings \( {\mathcal {H}}_1\) and \({\mathcal {H}}_2\) outlining their complete structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信