NOIRE-Net - 用于高纬度电离图自动分类和缩放的卷积神经网络

Andreas Kvammen, Juha Vierinen, D. Huyghebaert, T. Rexer, Andres Spicher, Björn J. Gustavsson, Jens Floberg
{"title":"NOIRE-Net - 用于高纬度电离图自动分类和缩放的卷积神经网络","authors":"Andreas Kvammen, Juha Vierinen, D. Huyghebaert, T. Rexer, Andres Spicher, Björn J. Gustavsson, Jens Floberg","doi":"10.3389/fspas.2024.1289840","DOIUrl":null,"url":null,"abstract":"Millions of ionograms are acquired annually to monitor the ionosphere. The accumulated data contain untapped information from a range of locations, multiple solar cycles, and various geomagnetic conditions. In this study, we propose the application of deep convolutional neural networks to automatically classify and scale high-latitude ionograms. A supervised approach is implemented and the networks are trained and tested using manually analyzed oblique ionograms acquired at a receiver station located in Skibotn, Norway. The classification routine categorizes the observations based on the presence or absence of E− and F-region traces, while the scaling procedure automatically defines the E− and F-region virtual distances and maximum plasma frequencies. Overall, we conclude that deep convolutional neural networks are suitable for automatic processing of ionograms, even under auroral conditions. The networks achieve an average classification accuracy of 93% ± 4% for the E-region and 86% ± 7% for the F-region. In addition, the networks obtain scientifically useful scaling parameters with median absolute deviation values of 118 kHz ±27 kHz for the E-region maximum frequency and 105 kHz ±37 kHz for the F-region maximum O-mode frequency. Predictions of the virtual distance for the E− and F-region yield median distance deviation values of 6.1 km ± 1.7 km and 8.3 km ± 2.3 km, respectively. The developed networks may facilitate EISCAT 3D and other instruments in Fennoscandia by automatic cataloging and scaling of salient ionospheric features. This data can be used to study both long-term ionospheric trends and more transient ionospheric features, such as traveling ionospheric disturbances.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"36 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NOIRE-Net–a convolutional neural network for automatic classification and scaling of high-latitude ionograms\",\"authors\":\"Andreas Kvammen, Juha Vierinen, D. Huyghebaert, T. Rexer, Andres Spicher, Björn J. Gustavsson, Jens Floberg\",\"doi\":\"10.3389/fspas.2024.1289840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millions of ionograms are acquired annually to monitor the ionosphere. The accumulated data contain untapped information from a range of locations, multiple solar cycles, and various geomagnetic conditions. In this study, we propose the application of deep convolutional neural networks to automatically classify and scale high-latitude ionograms. A supervised approach is implemented and the networks are trained and tested using manually analyzed oblique ionograms acquired at a receiver station located in Skibotn, Norway. The classification routine categorizes the observations based on the presence or absence of E− and F-region traces, while the scaling procedure automatically defines the E− and F-region virtual distances and maximum plasma frequencies. Overall, we conclude that deep convolutional neural networks are suitable for automatic processing of ionograms, even under auroral conditions. The networks achieve an average classification accuracy of 93% ± 4% for the E-region and 86% ± 7% for the F-region. In addition, the networks obtain scientifically useful scaling parameters with median absolute deviation values of 118 kHz ±27 kHz for the E-region maximum frequency and 105 kHz ±37 kHz for the F-region maximum O-mode frequency. Predictions of the virtual distance for the E− and F-region yield median distance deviation values of 6.1 km ± 1.7 km and 8.3 km ± 2.3 km, respectively. The developed networks may facilitate EISCAT 3D and other instruments in Fennoscandia by automatic cataloging and scaling of salient ionospheric features. This data can be used to study both long-term ionospheric trends and more transient ionospheric features, such as traveling ionospheric disturbances.\",\"PeriodicalId\":507437,\"journal\":{\"name\":\"Frontiers in Astronomy and Space Sciences\",\"volume\":\"36 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspas.2024.1289840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2024.1289840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每年都要采集数百万张电离图来监测电离层。积累的数据包含来自不同地点、多个太阳周期和各种地磁条件的未开发信息。在本研究中,我们建议应用深度卷积神经网络对高纬度电离图进行自动分类和缩放。我们采用了一种有监督的方法,并利用位于挪威斯基博特恩的接收站获取的人工分析倾斜电离图对网络进行了训练和测试。分类程序根据是否存在 E 区和 F 区痕迹对观测结果进行分类,而缩放程序则自动定义 E 区和 F 区的虚拟距离和最大等离子体频率。总之,我们认为深度卷积神经网络适用于自动处理电离图,即使在极光条件下也是如此。这些网络对 E 区域的平均分类准确率为 93% ± 4%,对 F 区域的平均分类准确率为 86% ± 7%。此外,网络还获得了科学上有用的缩放参数,E 区最大频率的绝对偏差中值为 118 kHz ±27 kHz,F 区最大 O 模式频率的绝对偏差中值为 105 kHz ±37 kHz。对 E 区和 F 区虚拟距离的预测得出的距离偏差中值分别为 6.1 km ± 1.7 km 和 8.3 km ± 2.3 km。所开发的网络可通过自动编目和缩放电离层显著特征,为 EISCAT 3D 和芬诺 斯堪迪亚的其他仪器提供便利。这些数据既可用于研究电离层的长期趋势,也可用于研究电离层的瞬态特征,如电离层扰动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NOIRE-Net–a convolutional neural network for automatic classification and scaling of high-latitude ionograms
Millions of ionograms are acquired annually to monitor the ionosphere. The accumulated data contain untapped information from a range of locations, multiple solar cycles, and various geomagnetic conditions. In this study, we propose the application of deep convolutional neural networks to automatically classify and scale high-latitude ionograms. A supervised approach is implemented and the networks are trained and tested using manually analyzed oblique ionograms acquired at a receiver station located in Skibotn, Norway. The classification routine categorizes the observations based on the presence or absence of E− and F-region traces, while the scaling procedure automatically defines the E− and F-region virtual distances and maximum plasma frequencies. Overall, we conclude that deep convolutional neural networks are suitable for automatic processing of ionograms, even under auroral conditions. The networks achieve an average classification accuracy of 93% ± 4% for the E-region and 86% ± 7% for the F-region. In addition, the networks obtain scientifically useful scaling parameters with median absolute deviation values of 118 kHz ±27 kHz for the E-region maximum frequency and 105 kHz ±37 kHz for the F-region maximum O-mode frequency. Predictions of the virtual distance for the E− and F-region yield median distance deviation values of 6.1 km ± 1.7 km and 8.3 km ± 2.3 km, respectively. The developed networks may facilitate EISCAT 3D and other instruments in Fennoscandia by automatic cataloging and scaling of salient ionospheric features. This data can be used to study both long-term ionospheric trends and more transient ionospheric features, such as traveling ionospheric disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信