前相干先验量子的 d 元素及其应用

Pub Date : 2024-06-03 DOI:10.1093/jigpal/jzae063
Xianglong Ruan
{"title":"前相干先验量子的 d 元素及其应用","authors":"Xianglong Ruan","doi":"10.1093/jigpal/jzae063","DOIUrl":null,"url":null,"abstract":"\n In this paper, we introduce the notion of d-elements on precoherent preidempotent quantale (PIQ), construct Zariski topology on $Max(Q_{d})$ and explore its various properties. Firstly, we give a sufficient condition of a topological space $Max(Q_{d})$ being Hausdorff. Secondly, we prove that if $ P=\\mathfrak{B}(P) $ and $ Q=\\mathfrak{B}(Q) $, then $P$ is isomorphic to $Q$ iff $ Max(P_{d}) $ is homeomorphic to $ Max(Q_{d}) $. Moreover, we prove that $ (P\\otimes Q)_{d} $ is isomorphic to $ P_{d} \\otimes Q_{d} $ iff $ P_{d} \\otimes Q_{d}=(P_{d} \\otimes Q_{d})_{d} $. Finally, we prove that the category $ \\textbf{dPFrm} $ is a reflective subcategory of $\\textbf{PIQuant}.$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The d-elements of precoherent preidempotent quantales and their applications\",\"authors\":\"Xianglong Ruan\",\"doi\":\"10.1093/jigpal/jzae063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we introduce the notion of d-elements on precoherent preidempotent quantale (PIQ), construct Zariski topology on $Max(Q_{d})$ and explore its various properties. Firstly, we give a sufficient condition of a topological space $Max(Q_{d})$ being Hausdorff. Secondly, we prove that if $ P=\\\\mathfrak{B}(P) $ and $ Q=\\\\mathfrak{B}(Q) $, then $P$ is isomorphic to $Q$ iff $ Max(P_{d}) $ is homeomorphic to $ Max(Q_{d}) $. Moreover, we prove that $ (P\\\\otimes Q)_{d} $ is isomorphic to $ P_{d} \\\\otimes Q_{d} $ iff $ P_{d} \\\\otimes Q_{d}=(P_{d} \\\\otimes Q_{d})_{d} $. Finally, we prove that the category $ \\\\textbf{dPFrm} $ is a reflective subcategory of $\\\\textbf{PIQuant}.$\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了前相先验量子空间(PIQ)上的 d 元素概念,在 $Max(Q_{d})$ 上构建了扎里斯基拓扑学,并探讨了它的各种性质。首先,我们给出了拓扑空间 $Max(Q_{d})$ 是 Hausdorff 的充分条件。其次,我们证明如果 $ P=\mathfrak{B}(P) $ 和 $ Q=\mathfrak{B}(Q) $ 是同构的,那么如果 $ Max(P_{d}) $ 与 $ Max(Q_{d}) $ 是同构的,那么 $P$ 与 $Q$ 就是同构的。此外,我们证明 $ (P\otimes Q)_{d} $ 与 $ P_{d} 是同构的。\otimes Q_{d} $ 如果 $ P_{d}\otimes Q_{d}=(P_{d} \otimes Q_{d})_{d} $。最后,我们证明类别 $ \textbf{dPFrm} $ 是 $\textbf{PIQuant} 的反射子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The d-elements of precoherent preidempotent quantales and their applications
In this paper, we introduce the notion of d-elements on precoherent preidempotent quantale (PIQ), construct Zariski topology on $Max(Q_{d})$ and explore its various properties. Firstly, we give a sufficient condition of a topological space $Max(Q_{d})$ being Hausdorff. Secondly, we prove that if $ P=\mathfrak{B}(P) $ and $ Q=\mathfrak{B}(Q) $, then $P$ is isomorphic to $Q$ iff $ Max(P_{d}) $ is homeomorphic to $ Max(Q_{d}) $. Moreover, we prove that $ (P\otimes Q)_{d} $ is isomorphic to $ P_{d} \otimes Q_{d} $ iff $ P_{d} \otimes Q_{d}=(P_{d} \otimes Q_{d})_{d} $. Finally, we prove that the category $ \textbf{dPFrm} $ is a reflective subcategory of $\textbf{PIQuant}.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信