CACTUS:用于高效物联网推理的动态可切换上下文感知微分类器

Mohammad Mehdi Rastikerdar, Jin Huang, Shiwei Fang, Hui Guan, Deepak Ganesan
{"title":"CACTUS:用于高效物联网推理的动态可切换上下文感知微分类器","authors":"Mohammad Mehdi Rastikerdar, Jin Huang, Shiwei Fang, Hui Guan, Deepak Ganesan","doi":"10.1145/3643832.3661888","DOIUrl":null,"url":null,"abstract":"While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS , for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CAC-TUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.","PeriodicalId":358835,"journal":{"name":"ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services","volume":"64 5","pages":"505-518"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference\",\"authors\":\"Mohammad Mehdi Rastikerdar, Jin Huang, Shiwei Fang, Hui Guan, Deepak Ganesan\",\"doi\":\"10.1145/3643832.3661888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS , for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CAC-TUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.\",\"PeriodicalId\":358835,\"journal\":{\"name\":\"ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services\",\"volume\":\"64 5\",\"pages\":\"505-518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3643832.3661888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3643832.3661888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在低功耗平台上执行基于深度学习的分类的现有策略假定模型是在所有感兴趣的类别上训练出来的,而本文认为,采用上下文感知,即把分类任务缩小到当前部署上下文,只包括最近的推理查询,可以大大提高资源受限环境下的性能。我们提出了一种可扩展的高效情境感知分类新范例 CACTUS,其中微分类器可识别与当前情境相关的一小部分类别,当情境发生变化时(例如,场景中出现了一个新类别),可快速切换到另一个合适的微分类器。CAC-TUS 具有多项创新,包括优化上下文感知分类器的训练成本,实现分类器之间的即时上下文感知切换,以及通过简单有效的切换策略平衡上下文切换成本和性能提升。我们的研究表明,在一系列数据集和物联网平台上,CACTUS 在准确性、延迟和计算预算方面都取得了显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CACTUS: Dynamically Switchable Context-aware micro-Classifiers for Efficient IoT Inference
While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS , for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CAC-TUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信