Daniel B Henrique, Xuesong Zhang, An Wang, E. Lagacé, Kyup Lee, Paul Kushner, I. D. Posen
{"title":"气候和气候变化对加拿大多伦多电动汽车充电需求的影响","authors":"Daniel B Henrique, Xuesong Zhang, An Wang, E. Lagacé, Kyup Lee, Paul Kushner, I. D. Posen","doi":"10.1088/2752-5295/ad53f4","DOIUrl":null,"url":null,"abstract":"\n Battery electric vehicles (BEVs) influence total and peak electricity demand, but few studies account for climate when studying these effects. This study quantifies BEV charging demand in the Greater Toronto and Hamilton Area using a detailed trip level approach, accounting for the effect of present and future temperatures on BEV energy consumption. The impact of temperature on charging demand was largest in winter. In 2019, charging demand increases by 52% on an average January day, and up to 82% on extreme days (relative to mild weather conditions). At 30% penetration, BEVs increase peak demand on January’s coldest day by 600-3600 MW (3-5%), of which 300-700 MW is driven by temperature, depending on the charging scenario. Climate change introduces small changes, increasing summer and decreasing winter charging demand. These results highlight the importance of adjusting for regional climate variation and temperature extremes when analyzing the impact of BEVs on the grid.","PeriodicalId":432508,"journal":{"name":"Environmental Research: Climate","volume":"72 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of climate and climate change on electric vehicle charging demand in Toronto, Canada\",\"authors\":\"Daniel B Henrique, Xuesong Zhang, An Wang, E. Lagacé, Kyup Lee, Paul Kushner, I. D. Posen\",\"doi\":\"10.1088/2752-5295/ad53f4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Battery electric vehicles (BEVs) influence total and peak electricity demand, but few studies account for climate when studying these effects. This study quantifies BEV charging demand in the Greater Toronto and Hamilton Area using a detailed trip level approach, accounting for the effect of present and future temperatures on BEV energy consumption. The impact of temperature on charging demand was largest in winter. In 2019, charging demand increases by 52% on an average January day, and up to 82% on extreme days (relative to mild weather conditions). At 30% penetration, BEVs increase peak demand on January’s coldest day by 600-3600 MW (3-5%), of which 300-700 MW is driven by temperature, depending on the charging scenario. Climate change introduces small changes, increasing summer and decreasing winter charging demand. These results highlight the importance of adjusting for regional climate variation and temperature extremes when analyzing the impact of BEVs on the grid.\",\"PeriodicalId\":432508,\"journal\":{\"name\":\"Environmental Research: Climate\",\"volume\":\"72 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research: Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5295/ad53f4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5295/ad53f4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effects of climate and climate change on electric vehicle charging demand in Toronto, Canada
Battery electric vehicles (BEVs) influence total and peak electricity demand, but few studies account for climate when studying these effects. This study quantifies BEV charging demand in the Greater Toronto and Hamilton Area using a detailed trip level approach, accounting for the effect of present and future temperatures on BEV energy consumption. The impact of temperature on charging demand was largest in winter. In 2019, charging demand increases by 52% on an average January day, and up to 82% on extreme days (relative to mild weather conditions). At 30% penetration, BEVs increase peak demand on January’s coldest day by 600-3600 MW (3-5%), of which 300-700 MW is driven by temperature, depending on the charging scenario. Climate change introduces small changes, increasing summer and decreasing winter charging demand. These results highlight the importance of adjusting for regional climate variation and temperature extremes when analyzing the impact of BEVs on the grid.