{"title":"利用神经纤维瘤病 1 型 (NF1) 癌症易感综合征的小鼠模型,阐明驱动小儿低级别胶质瘤形成和发展的细胞回路","authors":"David H Gutmann","doi":"10.1093/noajnl/vdae054","DOIUrl":null,"url":null,"abstract":"\n Brain tumors are the leading cause of cancer-related death in children, where low-grade gliomas (LGGs) predominate. One common hereditary cause for LGGs involves neurofibromatosis-1 (NF1) gene mutation, as seen in individuals with the NF1 cancer predisposition syndrome. As such, children with NF1 are at increased risk of developing LGGs of the optic pathway, brainstem, cerebellum, and midline brain structures. Using genetically engineered mouse models, studies have revealed both cell intrinsic (MEK signaling) and stromal dependencies that underlie their formation and growth. Importantly, these dependencies represent vulnerabilities against which targeted agents can be used for preclinical investigation prior to clinical translation.","PeriodicalId":19138,"journal":{"name":"Neuro-oncology Advances","volume":"86 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging murine models of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome to elucidate the cellular circuits that drive pediatric low-grade glioma formation and progression\",\"authors\":\"David H Gutmann\",\"doi\":\"10.1093/noajnl/vdae054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Brain tumors are the leading cause of cancer-related death in children, where low-grade gliomas (LGGs) predominate. One common hereditary cause for LGGs involves neurofibromatosis-1 (NF1) gene mutation, as seen in individuals with the NF1 cancer predisposition syndrome. As such, children with NF1 are at increased risk of developing LGGs of the optic pathway, brainstem, cerebellum, and midline brain structures. Using genetically engineered mouse models, studies have revealed both cell intrinsic (MEK signaling) and stromal dependencies that underlie their formation and growth. Importantly, these dependencies represent vulnerabilities against which targeted agents can be used for preclinical investigation prior to clinical translation.\",\"PeriodicalId\":19138,\"journal\":{\"name\":\"Neuro-oncology Advances\",\"volume\":\"86 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdae054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging murine models of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome to elucidate the cellular circuits that drive pediatric low-grade glioma formation and progression
Brain tumors are the leading cause of cancer-related death in children, where low-grade gliomas (LGGs) predominate. One common hereditary cause for LGGs involves neurofibromatosis-1 (NF1) gene mutation, as seen in individuals with the NF1 cancer predisposition syndrome. As such, children with NF1 are at increased risk of developing LGGs of the optic pathway, brainstem, cerebellum, and midline brain structures. Using genetically engineered mouse models, studies have revealed both cell intrinsic (MEK signaling) and stromal dependencies that underlie their formation and growth. Importantly, these dependencies represent vulnerabilities against which targeted agents can be used for preclinical investigation prior to clinical translation.