Sunisa Singhawannurat, Panuwat Lawtae, C. Rojviriya, Chalermluck Phoovasawat
{"title":"利用冷冻干燥和蔗糖浸出联合技术开发孔径可控的聚乳酸/海藻糖多孔支架,用于骨组织工程","authors":"Sunisa Singhawannurat, Panuwat Lawtae, C. Rojviriya, Chalermluck Phoovasawat","doi":"10.55713/jmmm.v34i2.1928","DOIUrl":null,"url":null,"abstract":"The combination of freeze drying and sucrose leaching technique was employed to fabricate PLA/HA scaffolds with controlled pore size. The influence of the HA content and sucrose size on the scaffold properties was investigated. The fabricated scaffolds showed porous properties with a porosity of 44% to 58% and pore size of 461 μm to 688 μm. The results indicated that the scaffolds possessed favorable porous properties, illustrated by good interconnectivity, appropriate pore size, and suitable porosity. These characteristics were crucial for facilitating bone cell growth and promoting the formation of new tissue within the scaffold structure. The compressive modulus of the scaffolds was examined and found to be in the range of 3.35 MPa to 5.75 MPa. Furthermore, the degradation behavior of the scaffolds was studied for 28 days in a Phosphate Buffered Saline solution. The results showed that the degradation rate was varied in the range of 6% to 14%. The water uptake of the scaffolds exhibited a range between 180% and 200%. Enhancement in water uptake was observed with higher HA content and increased sucrose size. Consequently, the scaffolds developed in this study hold promise as optimal candidates for bone tissue engineering applications.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of PLA/HA porous scaffolds with controlled pore sizes using the combined freeze drying and sucrose leaching technique for bone tissue engineering\",\"authors\":\"Sunisa Singhawannurat, Panuwat Lawtae, C. Rojviriya, Chalermluck Phoovasawat\",\"doi\":\"10.55713/jmmm.v34i2.1928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of freeze drying and sucrose leaching technique was employed to fabricate PLA/HA scaffolds with controlled pore size. The influence of the HA content and sucrose size on the scaffold properties was investigated. The fabricated scaffolds showed porous properties with a porosity of 44% to 58% and pore size of 461 μm to 688 μm. The results indicated that the scaffolds possessed favorable porous properties, illustrated by good interconnectivity, appropriate pore size, and suitable porosity. These characteristics were crucial for facilitating bone cell growth and promoting the formation of new tissue within the scaffold structure. The compressive modulus of the scaffolds was examined and found to be in the range of 3.35 MPa to 5.75 MPa. Furthermore, the degradation behavior of the scaffolds was studied for 28 days in a Phosphate Buffered Saline solution. The results showed that the degradation rate was varied in the range of 6% to 14%. The water uptake of the scaffolds exhibited a range between 180% and 200%. Enhancement in water uptake was observed with higher HA content and increased sucrose size. Consequently, the scaffolds developed in this study hold promise as optimal candidates for bone tissue engineering applications.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v34i2.1928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i2.1928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of PLA/HA porous scaffolds with controlled pore sizes using the combined freeze drying and sucrose leaching technique for bone tissue engineering
The combination of freeze drying and sucrose leaching technique was employed to fabricate PLA/HA scaffolds with controlled pore size. The influence of the HA content and sucrose size on the scaffold properties was investigated. The fabricated scaffolds showed porous properties with a porosity of 44% to 58% and pore size of 461 μm to 688 μm. The results indicated that the scaffolds possessed favorable porous properties, illustrated by good interconnectivity, appropriate pore size, and suitable porosity. These characteristics were crucial for facilitating bone cell growth and promoting the formation of new tissue within the scaffold structure. The compressive modulus of the scaffolds was examined and found to be in the range of 3.35 MPa to 5.75 MPa. Furthermore, the degradation behavior of the scaffolds was studied for 28 days in a Phosphate Buffered Saline solution. The results showed that the degradation rate was varied in the range of 6% to 14%. The water uptake of the scaffolds exhibited a range between 180% and 200%. Enhancement in water uptake was observed with higher HA content and increased sucrose size. Consequently, the scaffolds developed in this study hold promise as optimal candidates for bone tissue engineering applications.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.