{"title":"利用反向时间成像对油田注采过程进行被动地震监测","authors":"Runbi Yuan, Zhihui Zou, Song Xu, Wenhuan Kuang","doi":"10.1093/jge/gxae060","DOIUrl":null,"url":null,"abstract":"\n Monitoring underground fluid migration caused by injection/production processes is crucial for guiding petroleum exploitation in mature oilfields and ultimately enhancing petroleum production. In this paper, we propose a time-lapse reverse time imaging (RTI) to dynamically monitor the injection/production processes within oilfield. By utilizing RTI to track microseimicities at different time periods, we can analyze the relationship between injection/production activities and the spatiotemporal changes in microseismic distribution. The inferred relationship enables the time-lapse RTI to infer fluid migration patterns within oil reservoirs. To assess the accuracy and spatiotemporal resolution of the time-lapse RTI, we conducted numerical experiments to evaluate the imaging quality under different microseismic distribution scenarios. In addition, we assessed the method's stability under low signal-to-noise ratio conditions. Numerical results indicate that the time-lapse RTI can effectively distinguish the spatiotemporal variations of seismic swarms at depths of 0.5 kilometers within the target layer, even in the presence of strong noise. Practical applications show a significant correlation between changes in swarm distribution surrounding reservoirs and fluctuations in oil production. Utilizing time-lapse RTI enables real-time monitoring of oilfield injection/production processes, thereby offering valuable insights for optimizing oilfield development and fostering future increases in petroleum production.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive seismic monitoring of injection-production process in oilfield using reverse time imaging\",\"authors\":\"Runbi Yuan, Zhihui Zou, Song Xu, Wenhuan Kuang\",\"doi\":\"10.1093/jge/gxae060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Monitoring underground fluid migration caused by injection/production processes is crucial for guiding petroleum exploitation in mature oilfields and ultimately enhancing petroleum production. In this paper, we propose a time-lapse reverse time imaging (RTI) to dynamically monitor the injection/production processes within oilfield. By utilizing RTI to track microseimicities at different time periods, we can analyze the relationship between injection/production activities and the spatiotemporal changes in microseismic distribution. The inferred relationship enables the time-lapse RTI to infer fluid migration patterns within oil reservoirs. To assess the accuracy and spatiotemporal resolution of the time-lapse RTI, we conducted numerical experiments to evaluate the imaging quality under different microseismic distribution scenarios. In addition, we assessed the method's stability under low signal-to-noise ratio conditions. Numerical results indicate that the time-lapse RTI can effectively distinguish the spatiotemporal variations of seismic swarms at depths of 0.5 kilometers within the target layer, even in the presence of strong noise. Practical applications show a significant correlation between changes in swarm distribution surrounding reservoirs and fluctuations in oil production. Utilizing time-lapse RTI enables real-time monitoring of oilfield injection/production processes, thereby offering valuable insights for optimizing oilfield development and fostering future increases in petroleum production.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae060\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae060","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Passive seismic monitoring of injection-production process in oilfield using reverse time imaging
Monitoring underground fluid migration caused by injection/production processes is crucial for guiding petroleum exploitation in mature oilfields and ultimately enhancing petroleum production. In this paper, we propose a time-lapse reverse time imaging (RTI) to dynamically monitor the injection/production processes within oilfield. By utilizing RTI to track microseimicities at different time periods, we can analyze the relationship between injection/production activities and the spatiotemporal changes in microseismic distribution. The inferred relationship enables the time-lapse RTI to infer fluid migration patterns within oil reservoirs. To assess the accuracy and spatiotemporal resolution of the time-lapse RTI, we conducted numerical experiments to evaluate the imaging quality under different microseismic distribution scenarios. In addition, we assessed the method's stability under low signal-to-noise ratio conditions. Numerical results indicate that the time-lapse RTI can effectively distinguish the spatiotemporal variations of seismic swarms at depths of 0.5 kilometers within the target layer, even in the presence of strong noise. Practical applications show a significant correlation between changes in swarm distribution surrounding reservoirs and fluctuations in oil production. Utilizing time-lapse RTI enables real-time monitoring of oilfield injection/production processes, thereby offering valuable insights for optimizing oilfield development and fostering future increases in petroleum production.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.