螺旋桨噪声预测中的数据缩减技术

Samuel Afari, Reda Mankbadi
{"title":"螺旋桨噪声预测中的数据缩减技术","authors":"Samuel Afari, Reda Mankbadi","doi":"10.3390/aerospace11060453","DOIUrl":null,"url":null,"abstract":"High-fidelity computations are often used in predicting the tonal and broadband noise of propellers and rotors associated with Advanced Air Mobility Vehicles (AAMVs). But LES is both CPU and storage intensive. We present here an investigation of the feasibility of reduction methods such as Proper Orthogonal Decomposition as well as Dynamic Mode Decomposition for reduction of data obtained via LES to be used further to obtain additional parameters. Specifically, we investigate how accurate reduced models of the high-fidelity computations can be used to predict the far-field noise. It is found that POD is capable of accurately reconstructing the parameters of interest with 15–40% of the total mode energies, whereas the DMD can only reconstruct primitive parameters such as velocity and pressure loosely. A rank truncation convergence criterion > 99.8% is needed for better performance of the DMD algorithm. In the far-field spectra, DMD can only predict the tonal contents in the lower and mid frequencies, while the POD can reproduce all frequencies of interest.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Reduction Technologies in Prediction of Propeller Noise\",\"authors\":\"Samuel Afari, Reda Mankbadi\",\"doi\":\"10.3390/aerospace11060453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-fidelity computations are often used in predicting the tonal and broadband noise of propellers and rotors associated with Advanced Air Mobility Vehicles (AAMVs). But LES is both CPU and storage intensive. We present here an investigation of the feasibility of reduction methods such as Proper Orthogonal Decomposition as well as Dynamic Mode Decomposition for reduction of data obtained via LES to be used further to obtain additional parameters. Specifically, we investigate how accurate reduced models of the high-fidelity computations can be used to predict the far-field noise. It is found that POD is capable of accurately reconstructing the parameters of interest with 15–40% of the total mode energies, whereas the DMD can only reconstruct primitive parameters such as velocity and pressure loosely. A rank truncation convergence criterion > 99.8% is needed for better performance of the DMD algorithm. In the far-field spectra, DMD can only predict the tonal contents in the lower and mid frequencies, while the POD can reproduce all frequencies of interest.\",\"PeriodicalId\":505273,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11060453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/aerospace11060453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高保真计算通常用于预测与先进空中机动飞行器(AAMV)相关的螺旋桨和转子的音调噪声和宽带噪声。但是,LES 对 CPU 和存储空间的要求都很高。在此,我们将对适当正交分解和动态模式分解等还原方法的可行性进行研究,以还原通过 LES 获得的数据,并进一步用于获取其他参数。具体来说,我们研究了如何利用高保真计算的精确还原模型来预测远场噪声。研究发现,POD 能够以 15-40% 的总模式能量精确地重建相关参数,而 DMD 只能粗略地重建速度和压力等原始参数。要使 DMD 算法发挥更好的性能,秩截断收敛标准必须大于 99.8%。在远场频谱中,DMD 只能预测中低频的音调内容,而 POD 可以重现所有感兴趣的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Reduction Technologies in Prediction of Propeller Noise
High-fidelity computations are often used in predicting the tonal and broadband noise of propellers and rotors associated with Advanced Air Mobility Vehicles (AAMVs). But LES is both CPU and storage intensive. We present here an investigation of the feasibility of reduction methods such as Proper Orthogonal Decomposition as well as Dynamic Mode Decomposition for reduction of data obtained via LES to be used further to obtain additional parameters. Specifically, we investigate how accurate reduced models of the high-fidelity computations can be used to predict the far-field noise. It is found that POD is capable of accurately reconstructing the parameters of interest with 15–40% of the total mode energies, whereas the DMD can only reconstruct primitive parameters such as velocity and pressure loosely. A rank truncation convergence criterion > 99.8% is needed for better performance of the DMD algorithm. In the far-field spectra, DMD can only predict the tonal contents in the lower and mid frequencies, while the POD can reproduce all frequencies of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信