Cindy Hsin-Ti Lin, Muhammad Junaid Tariq, F. Ullah, Aishwarya Sannareddy, Farhan Khalid, Hasan Abbas, Abbas Bader, C. Samaras, Jason Valent, J. Khouri, F. Anwer, Shahzad Raza, D. Dima
{"title":"当前多发性骨髓瘤的新型靶向治疗策略","authors":"Cindy Hsin-Ti Lin, Muhammad Junaid Tariq, F. Ullah, Aishwarya Sannareddy, Farhan Khalid, Hasan Abbas, Abbas Bader, C. Samaras, Jason Valent, J. Khouri, F. Anwer, Shahzad Raza, D. Dima","doi":"10.3390/ijms25116192","DOIUrl":null,"url":null,"abstract":"Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the MM treatment paradigm, current therapies demonstrate limited long-term effectiveness and eventual disease relapse remains exceedingly common. Myeloma cells often develop drug resistance through clonal evolution and alterations of cellular signaling pathways. Therefore, continued research of new targets in MM is crucial to circumvent cumulative drug resistance, overcome treatment-limiting toxicities, and improve outcomes in this incurable disease. This article provides a comprehensive overview of the landscape of novel treatments and emerging therapies for MM grouped by molecular target. Molecular targets outlined include BCMA, GPRC5D, FcRH5, CD38, SLAMF7, BCL-2, kinesin spindle protein, protein disulfide isomerase 1, peptidylprolyl isomerase A, Sec61 translocon, and cyclin-dependent kinase 6. Immunomodulatory drugs, NK cell therapy, and proteolysis-targeting chimera are described as well.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Novel Targeted Therapeutic Strategies in Multiple Myeloma\",\"authors\":\"Cindy Hsin-Ti Lin, Muhammad Junaid Tariq, F. Ullah, Aishwarya Sannareddy, Farhan Khalid, Hasan Abbas, Abbas Bader, C. Samaras, Jason Valent, J. Khouri, F. Anwer, Shahzad Raza, D. Dima\",\"doi\":\"10.3390/ijms25116192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the MM treatment paradigm, current therapies demonstrate limited long-term effectiveness and eventual disease relapse remains exceedingly common. Myeloma cells often develop drug resistance through clonal evolution and alterations of cellular signaling pathways. Therefore, continued research of new targets in MM is crucial to circumvent cumulative drug resistance, overcome treatment-limiting toxicities, and improve outcomes in this incurable disease. This article provides a comprehensive overview of the landscape of novel treatments and emerging therapies for MM grouped by molecular target. Molecular targets outlined include BCMA, GPRC5D, FcRH5, CD38, SLAMF7, BCL-2, kinesin spindle protein, protein disulfide isomerase 1, peptidylprolyl isomerase A, Sec61 translocon, and cyclin-dependent kinase 6. Immunomodulatory drugs, NK cell therapy, and proteolysis-targeting chimera are described as well.\",\"PeriodicalId\":509625,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms25116192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijms25116192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
多发性骨髓瘤(MM)是由骨髓和/或髓外部位产生免疫球蛋白的浆细胞克隆性扩增引起的血液系统恶性肿瘤。骨髓瘤的常见表现包括贫血、肾功能障碍、感染、骨痛、高钙血症和疲劳。尽管近来骨髓瘤治疗模式取得了许多进展,但目前的疗法显示出的长期疗效有限,疾病最终复发的情况仍然极为常见。骨髓瘤细胞往往通过克隆进化和细胞信号通路的改变产生耐药性。因此,继续研究骨髓瘤的新靶点对于规避累积性耐药性、克服治疗限制性毒性以及改善这种不治之症的治疗效果至关重要。本文按分子靶点全面概述了 MM 的新型疗法和新兴疗法。概述的分子靶点包括 BCMA、GPRC5D、FcRH5、CD38、SLAMF7、BCL-2、驱动蛋白纺锤体蛋白、蛋白二硫异构酶 1、肽基脯氨酰异构酶 A、Sec61 转座子和细胞周期蛋白依赖性激酶 6。此外还介绍了免疫调节药物、NK 细胞疗法和蛋白水解靶向嵌合体。
Current Novel Targeted Therapeutic Strategies in Multiple Myeloma
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the MM treatment paradigm, current therapies demonstrate limited long-term effectiveness and eventual disease relapse remains exceedingly common. Myeloma cells often develop drug resistance through clonal evolution and alterations of cellular signaling pathways. Therefore, continued research of new targets in MM is crucial to circumvent cumulative drug resistance, overcome treatment-limiting toxicities, and improve outcomes in this incurable disease. This article provides a comprehensive overview of the landscape of novel treatments and emerging therapies for MM grouped by molecular target. Molecular targets outlined include BCMA, GPRC5D, FcRH5, CD38, SLAMF7, BCL-2, kinesin spindle protein, protein disulfide isomerase 1, peptidylprolyl isomerase A, Sec61 translocon, and cyclin-dependent kinase 6. Immunomodulatory drugs, NK cell therapy, and proteolysis-targeting chimera are described as well.